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1. INTRODUCTION

Seasonal climate forecasts are forecasts of the
expected climatic conditions in the forthcoming 3-6
months. Improvement in seasonal climate forecasts is
a key issue for helping countries reduce losses due to
weather and climate risks. In South America,
seasonal climate forecasts already benefit
governmental decision-making in several key areas
such as energy production, agriculture, and water
resources planning to minimize human and
economical losses caused by extreme climate events
(e.g. droughts and excessive rainy periods). For
example, seasonal forecasts of precipitation are used
for decision-making in  hydropower electricity
production in South America. Hydropower accounts
for the major source of electricity production in several
South American countries: 60% in Bolivia, Brazil,
Colombia, Paraguay and Uruguay; and 40% in
Argentina, Chile, Ecuador, Peru and Suriname.
Improved seasonal precipitation forecasts can help
South American governments to better manage these
carbon-friendly electricity production programs — a
strategic element in the reduction of global
greenhouse gas emissions. In addition, the
economies of South American countries also depend
heavily on agriculture, an activity which can also
benefit from higher quality seasonal climate forecasts.
Improved seasonal climate forecasts can thereby
clearly benefit the 370 million people who live in South
America.

South America seasonal climate forecasts are
currently produced using empirical (statistical) and
dynamical (physical) models. Given the availability of
these two modeling approaches one might question
the feasibility of producing a single (hybrid) and well
calibrated integrated forecast that gather all available
information at the time the forecast is issued. This
study illustrates how empirical and dynamical coupled
model precipitation seasonal forecasts for South
America are currently being integrated (i.e. combined
and calibrated) to produce hybrid forecasts at the
Centre for Weather Forecasts and Climate Studies
(CPTEC). Such a hybrid operational forecasting
system, the first to be implemented in South America,
has been developed by EUROBRISA (A EURO-
BRazilian Initiative for improving South American
seasonal forecasts, http://eurobrisa.cptec.inpe.br) — a
multi-institutional  cooperation initiative  between
CPTEC, the European Centre for Medium-Range
Weather Forecasts (ECMWF), the United Kingdom
Met Office (UKMO), Météo-France, the Brazilian
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National Institute of Meteorology (INMET), the
University of Sdo Paulo (USP), Federal University of
Parana (UFPR), the Parana State Meteorological
Institute of Technology (SIMEPAR) and the University
of Exeter. The skill of one month lead austral winter
(June-July-August or JJA) forecasts is assessed and
discussed. To illustrate an operational real time
forecast the most recent austral winter forecast for
JJA 2008 produced by this system is presented.

2. METHODOLOGY

One of the simplest empirical approaches to
produce one-month lead austral winter (June-July-
August) South America precipitation forecasts use as
predictor variable Pacific and Atlantic sea surface
temperatures observed in the previous May. This
multivariate regression model (Coelho et al. 2006) is
used here to produce empirical precipitation forecasts
for South America.

The dynamical systems used in this study to
produce one-month lead precipitation forecasts for
winter (June-July-August) are the coupled ocean-
atmosphere seasonal prediction models of ECMWF
(Anderson et al. 2007), known as System 3, and the
UK Met Office (UKMO; Graham et al. 2005), known as
GloSea. The forecast output from these models is
coordinated at ECMWF as part of the European
Seasonal to Inter-annual  Prediction project
(EUROCSIP).

To produce empirical-dynamical (i.e. hybrid)
multi-model integrated probabilistic forecasts we apply
a Bayesian procedure, known as forecast assimilation
(Stephenson et al. 2005). This procedure allows the
spatial calibration and combination of forecasts
produced by each individual model. The skill of
empirical, ECMWF, UKMO and integrated forecasts
obtained with forecast assimilation is assessed and
compared over the common hindcasts period 1987-
2001. All results were obtained using the cross-
validation method (Wilks 1995). Forecast verification
is performed using the version 2 Global Precipitation
Climatology Project (GPCP) monthly precipitation
analysis (Adler et al. 2003).

3. RESULTS AND DISCUSSION

Figure 1a-d shows correlation maps of
ECMWF, UKMO, empirical and integrated
precipitation anomaly forecasts for the period 1987—
2001. Correlation maps show the correlation between
observed and mean forecast anomalies at each grid
point. Both ECMWF and UKMO forecasts are bias
corrected because we are dealing with ensemble
mean forecast anomalies with respect to each model
climatology. The three individual models show high
skill with correlation coefficient generally between 0.4
and 0.8 in tropical South America. ECMWF, UKMO



and empirical forecasts are also skilful over the south
of Brazil, Uruguay and southeast Argentina with
correlation coefficient between 0.2 and 0.8. When the
forecasts of the three individual models was combined
and calibrated to produce integrated forecasts,
improved skill was obtained over tropical and
southeast South America (Fig. 1d).

Correlation is a deterministic measure of skill
that indicates how well associated is the forecast with
the corresponding observed anomaly. Correlation,
however, only assesses the mean forecast value. In
order to assess how well estimated is forecast
uncertainty one needs for example to examine scores
that evaluate the skill of probabilistic forecasts. Here
we examine relative operating characteristic (ROC)
skill score maps for the event positive or negative
precipitation anomaly (Figs 1e-h). ROC measures the
ability of the forecasting system in detecting a
particular event. In other words, it measures the ability
of the forecasting system in discriminating between
different forecast probabilities for a particular event
that is being forecast. This ability is known in the
forecast verification literature as forecast resolution.
The ROC skill score is defined as ROCSS = 2A - 1,
where A is the area under the ROC curve for forecast
probabilities of the event positive or negative
precipitation anomaly. A comprehensive review about
ROC and other forecast verification scores is found in
the book by Jolliffe and Stephenson (2003). No skill
forecasts have area A under the ROC curve equals to
0.5 (i.e. null ROCSS). Large positive values of
ROCSS indicate increasing ability of the forecasting
system in forecasting different forecast probabilities
for the event that is being forecast (i.e. increased
forecast resolution). Conversely, large negative
values of ROCSS indicate increasing inability of the
forecasting system in forecasting different forecast
probabilities for the event that is being forecast (i.e.
poor forecast resolution). In accordance with the
correlation map (Fig 1d), integrated forecasts (Fig 1h)
have improved (higher) skill in tropical and southeast
South America when compared to the three individual
forecasts (Figs. 1e-g). This result indicates that not
only the estimate of the mean forecast value is
improved by calibration and combination of empirical
and coupled model forecasts. Uncertainty estimates
are also improved by calibration and combination.

Another desirable property of a good
probabilistic seasonal forecasting system is forecast
reliability — a measure of how well calibrated are the
forecast probabilities produced by the forecasting
system. Forecast reliability can be assessed using the
so-called reliability diagram, which is a graph of
forecast probabilities against observed relative
frequencies of the event being forecast. A well
calibrated forecasting system must have its forecast
probabilities closely matching the observed relative
frequency of the event being forecast. In other words,
in a sample of N forecast probabilities for a particular
event (for example, occurrence of positive or negative
precipitation anomaly), each forecast probability for
this event must match the observed frequency n/N,
where n is the number of occasions when the event of
interest was observed. For example, for a forecast
probability of 75% for the event occurrence of positive

or negative precipitation anomaly, one should observe
the occurrence of this event in 75% out of the total
number N of events forecast. If such correspondence
between forecast probabilities and observed
frequencies is noted for all forecast probabilities the
forecasting system is said to be well calibrated
presenting good reliability.

Figure 2 shows reliability diagrams for the
event positive or negative precipitation anomaly for all
South America land grid points for the three individual
forecasts (Figs. 2a-c) and integrated forecasts (Fig.
2d) over the period 1987-2001. Perfectly reliable
forecasts should have a reliability diagram
represented by a diagonal (45°) line. The reliability
diagrams for ECMWF and UKMO (Figs. 2a-b) show a
typical signature of overconfident forecasting systems,
with high probabilities being forecast more frequently
than observed and low probabilities being forecast
less frequently than observed. Empirical and
integrated forecasts (Figs. 2c-d) show a signature of
well calibrated forecasts with good reliability, which
can be noted by the better match between the red
curve and the diagonal black line. The histograms on
the bottom right corner of each reliability diagram
show the frequencies of each forecast probability.
Figure 2 shows that these histograms peak close to
the climatological frequency of the event being
forecasts (i.e. 50% for the event positive or negative
precipitation anomaly). Empirical and integrated
forecasts have better reliability than ECMWF and
UKMO forecasts because their forecasts probability
density functions are better calibrated. ECMWF and
UKMO have overconfident (narrower) forecast
probability density functions when compared to
empirical and integrated forecast probability density
functions.

Figure 3a shows the real-time probability
forecast for JJA 2008 for the event negative or
positive anomaly issued by the hybrid (integrated)
system in May 2008. When issuing a seasonal
forecast, it is always good practice to examine and
compare the forecast with skill maps to identify
regions where the forecasting system has good past
performance. Over those regions the real-time
forecast is most likely to be successful. The skill maps
of Figs. 1d and 1h reveal that integrated forecasts
show good skill over northern South America
(including northern Brazil) and the central east region
of Argentina. Over these regions where integrated
forecasts show good past performance Fig. 3a shows
a forecast of high probability (above 60%) of above
average precipitation in northern Brazil and low
probability (between 20 and 40%) of above average
precipitation (i.e. high probability of below average
precipitation) in central east Argentina. Figure 3b
show the observed binary category in JJA 2008.
Regions where precipitation was observed to fall in
the category below average (i.e. below the long term
1987-2005 climatological mean) are shown in red.
Regions where precipitation was observed to fall in
the category above average are shown in blue. The
comparison of Figs. 1d, 1h, 3a and 3b reveals a
generally good agreement between the forecast
probability and the observed binary event (above or
below average precipitation).



4. CONCLUSIONS

This study has illustrated how empirical and
dynamical coupled model precipitation seasonal
forecasts are currently combined and calibrated in
EUROBRISA to produce integrated forecasts for
South America. The skill of austral winter precipitation
forecasts produced by two coupled ocean-
atmosphere models, an empirical model and
integrated (i.e. combined and calibrated) forecasts
has been assessed and discussed.
The main findings can be summarized as follows:

e forecast skill can be improved by calibration and
combination;

e the availability of forecasts produced by both
empirical and coupled models provide the
opportunity to produce objectively integrated, in
other words, combined and well calibrated
probabilistic forecasts that gather all available
information at the time the forecast is issued (i.e.
hybrid empirical-dynamical forecasts);

e austral winter precipitation forecasts produced by
the empirical-dynamical multi-model integrated
system presented here are skilful in tropical and
southeast South America.

e integrated forecasts generally provide skill that is
equal to or better than that of the best individual
model
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Figure 1: Correlation maps (panels a-d) and ROC skill score maps for the event negative or positive anomaly
(panels e-h) of ECMWF, UKMO, empirical and integrated one month lead June-July-August precipitation
forecasts for the period 1987-2001.
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Figure 2: Reliability diagrams for the event negative or positive anomaly of ECMWF, UKMO, empirical and
integrated one month lead June-July-August precipitation forecasts for the period 1987-2001.
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Figure 3: a) Real-time probability forecast for JUA 2008 for the event negative or positive precipitation anomaly
issued by the hybrid (integrated) system in May 2008. b) Observed category in JJA 2008: below average (red),
above average (blue). The period from 1987 to 2005 is used to compute the long term mean, which is used as
the representative value for average conditions.



