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Challenges for integrating seasonal climate forecasts in user
applications
Caio AS Coelho and Simone MS Costa
This review discusses the challenges for integrating seasonal

climate forecast information in user applications within the

design of a simplified end-to-end forecasting system

framework. Seasonal climate forecasts are operationally

produced at various climate prediction centers around the

world. However, these forecasts are rarely objectively

integrated in application models to help the end user decision-

making process, in spite of recent advances demonstrated

through pilot projects in health, agricultural and water

resources applications. An example of crop yield forecast

produced as part of the EUROBRISA multi-institutional

initiative is presented for illustrating some of the challenges.

The challenges for moving toward a more objective use of

seasonal climate forecasts to help support decision making

involve more efficient interaction among climate scientists,

system scientists and decision makers, with the end user

driving the skill assessment of the entire end-to-end

forecasting system through real world forecast applications.
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Introduction
Seasonal climate forecasts are forecasts of the expected

climate conditions for the next three to six months.

These forecasts can be of great utility for a number of

climate sensitive sectors (e.g. agriculture, health and

water resources) [1–6,7��,8–10,11��]. The explanation

for the feasibility of seasonal climate forecasting is given

in Box 1. The current approaches used for producing

seasonal climate forecasts include the use of physically

based dynamical global climate models [12,13,14��],
regional climate models [15–18], empirically based stat-

istical models [19,20], or a combination of dynamical and

empirical models [21]. All these four approaches produce

probabilistic forecasts for expressing the existing
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uncertainties in the forecasting process. For example,

for addressing forecast uncertainty due to the lack of

precise information about the initial state of atmospheric

conditions when starting the forecast model, physically

based dynamical seasonal forecasts are produced using

slightly different initial conditions, generating an ensem-

ble (i.e. a group) of forecasts [22]. For addressing uncer-

tainties in model formulation the multi-model ensemble

approach is used [14��,23��]. Empirical forecasts are

based on statistical models built using past observations.

For example, one can build a simple statistical model that

relates past equatorial Pacific sea surface temperature

observations and past rainfall observations over South

America. Given a new observation of Pacific and Atlantic

sea surface temperature one can use the derived statisti-

cal relationship to produce rainfall forecasts for South

America [21].

The main climate variables of interest for societal appli-

cations are atmospheric temperature, rainfall and humid-

ity [33]. Even though climate is not the unique driver for

these applications, the existence of relationships between

climate variables and crop yield [34,35], food security [36–
39], disaster management [40,41], disease incidence

[42��,43–45] and disease risk [46] provides support and

motivates scientists to explore the potential for the use of

seasonal climate forecast information for planning activi-

ties in several societal, economical and environmental

sectors [1]. In other words, user needs promote an inter-

disciplinary test bed for designing end-to-end forecasting

systems [29,42��] investigating the utility of climate fore-

cast information for real life applications. For this purpose

seasonal climate forecasts need to be tailored to feed

application models such as crop models, disease models

and hydrological models, or to feed user-specific decision

processes [47��,48]. In this paper the focus is on feeding

application models. Although Brazil [49,50] and Australia

took the lead in using seasonal forecast information for

agricultural and natural ecosystems applications around

the nineties [51], the use of physically based dynamical

model seasonal forecasts in societal applications is rela-

tively novel, and was extensively promoted by efforts in

EU projects like DEMETER (www.ecmwf.int/research/

demeter), ENSEMBLES (ensembles-eu.metoffice.com)

and AMMA (www.amma-international.org), by the

National Oceanic and Atmospheric Administration

(NOAA), by the International Research Institute for

Climate and Society (IRI, portal.iri.columbia.edu) and

EUROBRISA (eurobrisa.cptec.inpe.br): A EURO-Brazi-

lian Initiative for Improving South American Seasonal

forecasts [52].
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Box 1 Why is it possible to forecast the climate on the seasonal

time scale

Given the chaotic nature of the climate system one might question

the feasibility of forecasting climate conditions months in advance.

Seasonal climate forecasting is feasible because atmospheric

variability on the seasonal time-scale is modulated by slowly varying

boundary conditions [24,25]. The El Niño Southern Oscillation

(ENSO) phenomenon, characterized by anomalous heating or cool-

ing of the equatorial Pacific Ocean depending on its phase, is the

most evident example of such modulation. The maintenance of

anomalous surface temperature conditions in the equatorial Pacific

for a few months during ENSO generates global scale atmospheric

circulation patterns [26] able to produce anomalous climate condi-

tions in remote regions (e.g. South and North America, Africa,

Indonesia and Australia). This climate modulation promoted by

slowly varying boundary (sea surface) conditions is not noticeable in

day-to-day weather conditions but in seasonal averages (e.g. three-

month mean) becomes evident [27]. Seasonal climate forecasting

science takes advantage of the observed state of global boundary

conditions (e.g. sea surface temperature (SST), snow cover and soil

moisture) to make climate predictions for the next three to six

months. This science has progressed considerably in the last decade

but the tropics remain the region where seasonal forecasts are most

successful [12,14��,21,23��,28–32].
The aim of the review is to discuss the challenges [53] for

integrating seasonal climate forecast information in user

applications within the design of an end-to-end forecast-

ing system [29,42��]. The main focus of the paper is on

the process of producing forecast information relevant to

user applications rather than using forecast information in

the decision-making process. As this is a relatively new

field of inter-disciplinary research the review will cover

the period 2005–2010, although previously published

literature fundamental for supporting the bases for sea-

sonal climate forecasting is also included. A practical

example of crop yield prediction is used to illustrate some

of the discussed challenges. These forecasts are poten-

tially useful for farmers, government agencies, banks and

insurance companies. The review is concluded with the

authors’ views on how to improve the way seasonal

forecast information can be objectively integrated into

real life application to support decision making.

Simplified framework for an end-to-end
forecasting system
Figure 1 shows a simplified framework for an end-to-end

forecasting system. At the top end of this framework

climate science is in charge of producing climate forecasts

through knowledge of climate processes, which will feed

the so-called systems science, placed at the center of the

framework. Systems science investigates impacts of cli-

mate on natural and human systems through knowledge

about physical and socio-economic impacts. Systems

science is capable of analyzing climate risk in conjunction

with non-climate related risks, and also performing

vulnerability assessments. Finally at the bottom end of

the framework, decision making is performed on the basis
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of forecast information jointly produced by climate and

systems sciences. Such a framework allows usefulness/

utility assessment of climate forecast information through

the use of application models predicting variables of

societal interest. This assessment is distinct from the

traditional climate forecast assessment generally per-

formed in climate science, which directly compares

observed climate with forecast climate produced by cli-

mate models. By assessing the output at the bottom end

of this framework the complete end-to-end forecasting

system is indirectly assessed.

Challenges of an end-to-end forecasting
system
The link between each component of the proposed

framework represents a challenge for the system success

in terms of forecast information production relevant for

user applications. The success of integrating seasonal

climate forecasts in user applications will therefore only

be achieved if the entire chain of challenges is thoroughly

resolved. The first challenge appears within climate

science and represents the production of climate forecast

information of relevant variables for user applications

[54–58] one to six months in advance. This challenge

is resolved with the aid of physically based global climate

models [12,14��], empirically based climate models

[19,20] or a combination of both [21]. However, these

models generally produce forecast information at coarse

spatial resolution (of the order of 100–200 km).

As application models usually require climate forecast

information at much refined spatial and time resolution

[59], there is therefore the need for downscaling the

forecasts produced by climate models to the desirable

level of details required in application models [60].

Such refinement of forecast information represents

the second challenge that is placed in the interface

between climate and systems science. This challenge

can be resolved using: physically based regional climate

models that are able to transform course resolution

forecasts produced by global climate models into fore-

casts at smaller spatial scales [15–18], statistical down-

scaling techniques [61–64] that relate the observed

climate at a number of locations or regions with climate

forecasts produced by climate models, creating statisti-

cal relationships for producing local scale forecasts, and

time disaggregation procedures, know as weather gener-

ation [65–67,68��], that transform monthly climate fore-

casts into daily forecasts, preserving for example the

statistical properties of the monthly mean forecast and

daily observations (e.g. daily rainfall intensity and fre-

quency) for the location to where the forecast in being

timely disaggregated. However these approaches inevi-

tably promote the propagation of systematic biases [69]

from global to the regional spatial scale and con-

sequently to the local scale where application models

usually operate.
nal climate forecasts in user applications, Curr Opin Environ Sustain (2010), doi:10.1016/
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Figure 1
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A simplified framework for an end-to-end forecasting system.
After climate forecast information is tailored at the desir-

able spatial and temporal scales for use in application

models there is also the need for developing procedures

for interfacing climate forecast information into appli-

cation models [59]. This interfacing process concludes

the second challenge. The third challenge of the chain

appears within systems science and represents the pro-

duction of information to help support decision making

through the use of application models based on both

climate and non-climate related knowledge. Application

models are process-based [35,46,70–72] or empirical

[43��,73–76]. The recent literature contains examples

of the use of application models producing relevant

information for decision making in agriculture

[34,35,77–80], health [43��,45,46,73,74,76,81] and water

resources [16,50,59,61,82–84]. At the bottom end of the

framework is the end user who will receive the produced

information (e.g. crop yield forecast, river flow forecast,

and disease risk forecast) and combine with other

non-climate related information to make decisions. This

process usually involves planning and decision tools

commonly used in climate risk management [59,70,

85��,86,87��,88,89]. Depending on how well in advance
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this information is available for the user it will be possible

to make strategic plans that can be updated/revisited in

the future when new forecast information becomes avail-

able. An effective communication between climate and

system scientists with decision makers is a fundamental

ingredient for successfully resolving the third challenge

[47��,90,91��,92��,93]. End users need to be trained for

assimilating the information produced by climate and

system scientists to maximize the utility of the forecasts

in their decisions. For example, application models can

produce probabilistic forecast information based on

ensemble of climate model forecasts, and end users need

to be prepared for using this information [92��,94].

The fourth challenge is to stimulate feedback provision

by the end user to system and climate scientists for

improving the forecasting process [48]. Such feedback

is of great importance for tailoring forecast information

adequately to facilitate decision making. Finally, the fifth

and fundamental challenge for the success of an end-to-

end forecasting system able to effectively integrate sea-

sonal climate forecasts in users applications is to design

and implement the whole system. In the authors opinion
nal climate forecasts in user applications, Curr Opin Environ Sustain (2010), doi:10.1016/
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this is the most difficult challenge involving inter-disci-

plinary work among climate scientists, system scientists

and decision makers. Others might argue that the greatest

challenge is to make sure that the forecasts benefit the

people who need them most, rather than the ones who are

already economically advantaged [95–97].

Example of crop yield prediction
Agriculture is an economic activity that strongly depends

on climate and weather information. In this section we

briefly report how the first three challenges of Figure 1

have been addressed in EUROBRISA for producing

maize crop yield forecasts for Rio Grande do Sul State

(RS), a region in south Brazil where seasonal climate

forecasts have skill and consequently promising useful

value. Brazil is the third main maize producer in the entire

world after USA and China, and RS State is the second

greatest producer in Brazil (Brazilian Institute of Geogra-

phy and Statistics; www.sidra.ibge.gov.br). Intraseasonal

variability of maize yields is high, mainly due to irregular

rainfall during the cropping seasons. Therefore, it is

important to predict the expected yield during the crop

season to support decision making.

The first challenge of Figure 1 was resolved with monthly

mean rainfall forecasts produced by the European Centre

for Medium-range Weather Forecast (ECMWF) seaso-

nal climate forecast model (known as System 3)

[13,28,98,99]. Maize in RS is sown from September to

October and harvested from January to the beginning of

March. In order to produce a forecast for the end of the
Please cite this article in press as: Coelho CAS, Costa SMS. Challenges for integrating seaso
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Figure 2

Map of main maize yield producer region in Rio Grande do Sul State (RS), in s

the previous September (i.e. five months in advance) for Erechim (27.68S, 52

period 1990–2005. Grain maize yield simulated by GLAM using the observe

eleven dots shown in the figures for each year) using disaggregated daily ra

interval given by the ensemble mean plus or minus 1.96 times the ensemble

Institute of Geography and Statistics (blue line).

Current Opinion in Environmental Sustainability 2010, 2:1–9
crop season ECMWF monthly mean rainfall forecasts

issued in the beginning of September for the following

six months (i.e. zero to five month lead forecasts, from

September up to February of the following year) were

used in this study. Rainfall forecasts for the closest

climate model grid point to the main maize producer

region in RS (shaded area on map of Figure 2) were used

in the study. Before proceeding to the second challenge,

monthly ECMWF rainfall forecasts were calibrated (bias

corrected) by removing the long-term mean model cli-

matology of retrospective forecasts for the period 1981–
2005 and adding the observed [100] monthly mean cli-

matology for the same period.

The second challenge of Figure 1 was addressed with the

use of a non-homogeneous hidden Markov model

(NHMM, portal.iri.columbia.edu/portal/server.pt?ope-

n=512&objID=697&PageID=7575&cached=true&mo-

de=2&userID=2) that integrates weather classification

with a stochastic weather model. This model was used

for disaggregating bias corrected ECMWF monthly mean

rainfall forecasts into daily sequences of rainfall a location

named Erechim (27.68S, 52.38W). The weather generator

estimates the occurrence of rainfall based on a first-order

Markov chain and the rainfall amount based on a gamma

distribution fit to 16 years of daily observed rainfall (i.e.

daily climatological distribution) in Erechim. The

NHMM has previously been applied to disaggregating

seasonal rainfall predictions [101], and to disaggregate

rainfall data in space and time as input to a maize

simulation model [66].
nal climate forecasts in user applications, Curr Opin Environ Sustain (2010), doi:10.1016/

outhern Brazil (left). Maize grain yield forecasts for February produced in

.38W), which is located in the main maize producer region in RS, for the

d daily rainfall (red line). Ensemble mean grain yield (i.e. the mean of the

infall forecasts (black line). The dashed lines indicate the 95% forecast

standard deviation. Official grain maize yield estimated by the Brazilian

www.sciencedirect.com

http://www.sidra.ibge.gov.br/
http://dx.doi.org/10.1016/j.cosust.2010.09.002
http://dx.doi.org/10.1016/j.cosust.2010.09.002


Challenges for integrating seasonal forecasts in applications Coelho and Costa 5

COSUST-79; NO. OF PAGES 9
The disaggregated daily rainfall forecasts were then used

as input data to a process-based crop model — GLAM

(General Large Area Model, [102]) to predict maize (Zea
mays L.) crop yield in Erechim. This crop model has

previously been used to simulate groundnut in India

[103,104] and wheat in China [105]. As part of the third

challenge in Figure 1 the crop model was calibrated for

simulating maize based on a comprehensive soil and crop

phenology database observed in RS [106,107] and also

adjusted to assimilate a total of 11 ensemble member

daily rainfall forecasts produced with the weather gener-

ation procedure described above. GLAM requires daily

rainfall, maximum and minimum temperature and sur-

face incident solar radiation. Temperature and solar radi-

ation were assumed being monthly daily climatology

conditioned on wet and dry conditions observed in

Erechim.

As an example of information to support decision making

within the third challenge, Figure 2 shows maize grain

yield forecasts for February produced in the previous

September (i.e. five months in advance) for Erechim,

which is located in the main maize producer region in

RS, for the period 1990–2005. The red line shows grain

maize yield simulated by GLAM using the observed daily

rainfall, which represents the potential yield that could be

produced given the observed climate conditions. As high-

lighted in [42��], in the absence of observed data for

verifying forecasts produced by application models a

feasible alternative is to use the application model fed

with observed climate to produce the reference verifica-

tion data — the so-called tear-2 verification procedure.

The black line is the ensemble mean grain yield (i.e. the

mean of the eleven dots shown in the figures for each

year) using disaggregated daily rainfall forecasts. The

dashed lines indicate the 95% forecast interval given

by the ensemble mean plus or minus 1.96 times the

ensemble standard deviation. The blue line is the official

yield estimate by the Brazilian Institute of Geography

and Statistics. A generally good agreement is observed

between the simulate yield (red line), the official yield

estimate (blue line) and the forecast yield (black line) for

the last six years. For most of these years the observed

yield is within the 95% forecast interval, indicating good

reliability of grain yield forecasts. The better agreement

between forecast, simulated and official yield estimates in

the later forecast period compared to those in earlier

forecast period is likely to be related to quality improve-

ments in both observed rainfall and yield estimates in

latter part of the period. This kind of information pro-

vided to end users (e.g. a consortium of farmers, banks,

and insurance companies) together with a real-time grain

yield forecast for the next growing season can potentially

be used as an additional source of information to support

their decision making process for mitigating possible

losses. The forecast yield information could for example

benefit farmers by planting a different crop, commodity
Please cite this article in press as: Coelho CAS, Costa SMS. Challenges for integrating seaso
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future traders on defining prices for selling maize in the

food market, banks in making decisions on loans for

planting in particular years and insurance companies

deciding whether or not to issue policies.

Conclusions
This review discussed the challenges for integrating

seasonal climate forecast information in user applications

in the context of a simplified framework for an end-to-end

forecasting system. Research and developments during

the last five years through a number of pilot projects

(DEMETER, ENSEMBLES, AMMA, and EURO-

BRISA) indicate promising signs of the utility of integrat-

ing seasonal forecast information in user applications.

The previous section presented an illustration of crop

yield forecasting recently developed as part of EURO-

BRISA. Although seasonal climate forecasts are produced

operationally at a number of centers around the world

they are rarely integrated objectively (i.e. used as input

variables for application models) in the process of produ-

cing user-oriented forecasts variables (e.g. crop yield

forecasts) to help decision making. In the authors view

the reasons for this lack of use are likely to be related to

the challenges in interfacing forecast information from

climate to systems science. Good communication is also

advocated by some authors in support of good system

science [108,109]. Deficiencies in communicating fore-

cast uncertainty, which propagates from the global cli-

mate scale to the regional and local scales, are also causes

for limited use of seasonal forecast in decision making

[110–112]. To allow more efficient utility the current

decision-making procedures need to be adapted for

objectively assimilating seasonal climate forecast infor-

mation (e.g. site or region-specific probabilistic forecasts

in the form of probability density function). There is

therefore the need to move toward more quantitative use

of forecast information.

There is a clear need for additional inter-disciplinary

research to facilitate more effective implementation of

end-to-end forecasting systems able to objectively use

seasonal forecast information in user-oriented appli-

cations. Supplementary pilot projects need to be designed

and implemented to promote the integration of decision

makers, forecast developers and providers through the

development of forecast products relevant for end users.

The involvement of users is these projects is fundamental

for improving credibility in forecast applications [97,113–
116]. These projects provide the opportunity to develop

and validate end-to-end forecasting systems, which allow

verification of forecasts through application models pre-

dicting variables of direct societal interest rather than

climate variables produced by climate models. A well-

designed combination of observed climate, weather and

seasonal forecasts should be envisaged in these projects to

allow the update of user-oriented forecast information for

decision making at varying lead times from the target
nal climate forecasts in user applications, Curr Opin Environ Sustain (2010), doi:10.1016/
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forecast month. The investigation on forecast skill trans-

fer between spatial scales should also be prioritized

because forecast skill has to be adequate for the needs

of the end user (e.g. at the farm, river or neighborhood

level).

In summary the implementation success of an end-to-end

forecasting system for integrating seasonal climate fore-

cast information in user applications will depend on

thoroughly designing the system in a way that the end-

user feeds information back to climate and system scien-

tists for improving the system. The user is then in charge

of driving the skill of the forecasting system, because the

output of a user-specific application model when used as

an ingredient for a decision-making process will define

the real world forecast application skill. In more practical

terms, the success of the system will also depend on the

kind of required information, forecast target period, skill

of seasonal climate forecast at the spatial and temporal

scale of interest and status of application model devel-

opment. The remaining outstanding challenge is effec-

tive communication and cooperation between climate

scientists, system scientists and decision makers

[90,91,92��]. The overall success of the system can be

assessed by comparing the outcomes of what would have

been produced without the availability of forecasts tai-

lored for the particular application of interest [48,117].
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McVean M, Murphy JM, Rogel P, Smith D, Palmer TN: Addressing
model uncertainty in seasonal and annual dynamical seasonal
forecasts. Q J Roy Meteor Soc 2009, 135:1538-1559 doi:
10.1002/qj.464.

The authors assess the skill of multi-model ensemble climate forecasts
that are useful to resolve challenge 1 discussed in the review.

15. Chou SC, Bustamante J, Gomes J: Evaluation of Eta model
seasonal precipitation forecasts over South America.
Nonlinear Proc Geoph 2005, 12:537-555.

16. Reis D, Martins E, Nascimento LS, Costa A, Alexandre A: Monthly
streamflow forecasts for the state of Ceará, Brazil. IAHS-AISH
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