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Abstract

The ultimate aim of this study is to produce improved probability forecasts of sea-

sonal rainfall for South America. Such forecasts allow local governments plan their

actions prior to the occurrence of climate anomalies such as those observed during

El Niño-Southern Oscillation (ENSO) events. ENSO is one of the most important

modes of climate variability affecting precipitation over South America. Therefore,

the improvement of ENSO seasonal forecasts can improve the quality of rainfall

forecasts for South America.

This study establishes a unified framework for the production of calibrated

probability forecasts of observable variables based on information from ensembles

of climate model predictions. In the same way that data assimilation is needed to get

observed information into climate models, an analogous assimilation is required to

convert multi-model climate predictions into well-calibrated forecasts of real-world

observable variables. This Bayesian combination/calibration procedure is referred

to as forecast assimilation.

The methodology, which allows the combination of coupled model with em-

pirical predictions, is developed and tested in three stages. First, the Bayesian pro-

cedure is developed for the calibration of forecasts of an ENSO index (Niño-3.4)

obtained from an individual coupled model. Next, the method is extended for the

calibration and combination of equatorial Pacific sea surface temperature (SST)

anomaly forecasts from seven DEMETER coupled models. Hence, in the second

stage the method deals with multi-model forecasts and acquires the first spatial (lon-

gitudinal) component. Finally, in the third stage the Bayesian multi-model method

is applied to the calibration and combination of spatial field forecasts of rainfall

over South America. Results show that Bayesian combined forecasts are better

calibrated and more reliable than both raw and bias-corrected coupled model fore-

casts.
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Chapter 1

Introduction

1.1 Motivation

The need to produce timely forecasts of the ever-changing environment is a ma-

jor driving factor in weather and climate research. The challenge of producing

and improving forecasts has generated many fascinating areas of research in atmo-

spheric and oceanic science such as numerical weather prediction, data assimila-

tion, statistical down-scaling, single-model ensemble prediction, and more recently

multi-model ensemble prediction. Much effort has gone into producing reliable and

informative forecasts of future observable variables given knowledge of observable

variables at earlier times. Such forecasts are inherently probabilistic because of the

uncertainties in environmental data (e.g. measurement errors and sparse coverage)

and structural and parametric uncertainty in numerical prediction models.

Recent studies have focussed on how best to combine multi-model climate

predictions (Kharin and Zwiers 2002; Krishnamurti et al. 1999, 2000a, 2000b and

2001; Coelho et al. 2003, 2004, etc.). There are many possible methods for com-

bining forecasts (see section 2.3 in chapter 2 for a review) but no unique method can

be prescribed that is ideal for all the types of weather/climate forecasting problems.

In other words, there is no universally good method for all forecasting problems.

However, there is a need to develop a framework that can incorporate the different

approaches for combining weather and climate predictions in order to provide the

1



Chapter 1. Introduction 2

most informative forecasts of future observables. In addition to the issue of how

best to combine multiple predictions, there is also an important issue as to how best

to calibrate the predictions. There are many reasons why model predictions should

not be taken on face value as forecasts of observable variables (e.g. drift in coupled

models that leads to bias) and so calibration is a necessary step in obtaining useful

information for forecast users and risk/impact assessments. This thesis addresses

both the issue of calibration and the issue of combination of seasonal climate pre-

dictions.

This study establishes a unified framework for the production of calibrated

probability forecasts of observable variables based on information from ensembles

of climate model predictions. In the same way that data assimilation is needed

to get observed information into climate models, it is argued that an analogous

assimilation is required to convert climate model predictions into well-calibrated

forecasts of real-world observable variables. This Bayesian combination/calibration

procedure is referred to here as forecast assimilation (see section 3.2 of chapter 3).

Forecast assimilation is a unified framework that extends previous approaches such

as statistical down-scaling and model output statistics (Glahn and Lowry 1972) for

use with multi-model ensemble predictions.

1.2 Aim and strategy

The aim of this study is to produce improved and well-calibrated seasonal proba-

bility forecasts of rainfall for South America through the appropriate application of

statistical modelling methods. Statistical modelling methods have already been de-

veloped for producing empirical predictions and also for the calibration of determin-

istic predictions produced by physically derived dynamical models. The calibra-

tion of deterministic predictions against past observation is known as model output

statistics. However, with the availability of ensemble climate predictions from dif-

ferent coupled models there is clearly the need for development of statistical mod-

elling methods for the calibration and combination of these predictions. Bayesian
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forecast assimilation is the method that is here developed and proposed for dealing

with multi-model ensemble predictions. Rather than directly address South Amer-

ican rainfall, the methodology is developed progressively in three stages. First, the

Bayesian procedure is developed for the calibration of forecasts of a single ENSO

index (Niño-3.4) obtained from an individual coupled model. Therefore, in this

first stage the method is developed for a single point in space. Next, the method

is extended for the calibration and combination of equatorial Pacific sea surface

temperature (SST) anomaly forecasts from seven distinct coupled models. Hence,

in the second stage the method deals with multi-model forecasts and acquires the

first spatial (longitudinal) component. Finally, in the third stage the Bayesian multi-

model method is applied to the calibration and combination of spatial field forecasts

of rainfall over South America.

1.3 Thesis plan

Chapter 2 provides the background of the thesis: an overview of seasonal forecast-

ing; a brief description of the DEMETER project 1 (Palmer et al. 2004) and its

datasets that are used in this study; and a literature review on forecast calibration

and combination. Chapter 3 establishes a unified framework for forecasting, defines

the concept of forecast assimilation, and describes the Bayesian methodology ap-

plied in this study. Chapter 4 presents the results of the first application (univariate

zero-dimensional Niño-3.4 forecasts). Chapter 5 shows the results of the second

application (multivariate one-dimensional equatorial Pacific SST forecasts). Chap-

ter 6 provides a brief literature review of South America seasonal forecasting and

presents the results of the third and final application (multivariate two-dimensional

South American rainfall forecasts). Finally, chapter 7 concludes the thesis with a

summary of findings and a discussion of possible future areas of research.

1The DEMETER acronym stands for Development of a European Multi-model Ensemble system
for seasonal to inTERannual prediction. See website http://www.ecmwf.int/research/demeter



Chapter 2

Background

2.1 Aim

This chapter presents the background necessary for understanding the two scientific

issues addressed in this thesis: forecast calibration and combination. An overview

on seasonal forecasting and a literature review on forecast combination are pre-

sented here.

2.2 Seasonal forecasting

2.2.1 Overview

Traditional weather forecasts provide information about the weather that is likely

during the next few days. Although it is not possible to precisely predict daily

weather changes beyond about a week in advance (Lorenz 1963), it is possible

to make inferences about likely future conditions averaged over periods of a few

months. Seasonal forecasts provide information on these long-term time averages

(usually greater than one month but less than one year).

Day-to-day weather is, however, largely unpredictable on seasonal time-scale.

Therefore seasonal forecasts are probabilistic, with probabilities that can be esti-

mated from ensembles of predictions obtained from climate models. Given the

4



Chapter 2. Background 5

unpredictable chaotic nature of daily weather, it is natural to question the feasibility

of seasonal forecasting. Seasonal forecasting is feasible because the atmospheric

variability on seasonal time scale is modulated by slowly varying boundary forc-

ing (Charney and Shukla 1981; Brankovic et al. 1994). Conditions at the Earth’s

surface, such as slow fluctuations in surface temperature, soil moisture and snow

cover, are able to influence weather patterns. These influences are hardly noticed

in daily weather events but become noticeable in long-term weather averages. In

particular, SSTs can effectively modulate seasonal climate variability. Slow fluctu-

ations in SST can be predicted, with various degrees of accuracy depending on the

ocean basin, up to one year ahead (Davis 1976; Balmaseda et al. 1994; Davey et

al. 1994; Wu et al. 1994) and the relationship between SST and weather can be

represented in computer models of the atmosphere and ocean. These models form

the dynamical basis for seasonal forecasting.

The strongest links between SST patterns and seasonal climate are found in the

tropics, and it is here that seasonal forecasts are most successful (Goddard et al.

2001). The most well-known predictability is associated with the El Niño-Southern

Oscillation (ENSO), which is a coupled ocean-atmosphere phenomenon that occurs

on average every three to seven years (Philander 1990). ENSO has two phases, de-

pending on the conditions of the upper tropical Pacific ocean: a warm phase, known

as El Niño, when warmer than normal conditions are observed in the tropical Pa-

cific; and a cold phase, known as La Niña, when colder than normal conditions are

observed in the tropical Pacific. During its warm phase sea level pressure (SLP)

is below normal in the central-east tropical Pacific and above normal in the west

tropical Pacific/Indonesian region. During its cold phase this pressure pattern re-

verses, with the central-east tropical Pacific presenting above normal SLP and the

west tropical Pacific/Indonesian region experiencing below normal SLP. ENSO can

change weather/climate not only in the tropics, but also in several other regions

around the world via atmospheric teleconnection (Wallace and Gutzler 1981; Tren-

berth et al. 1998). It can affect seasonal rainfall in remote locations away from

the tropics leading to droughts in some regions and floods in others (Ropelewski
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El Niño teleconnections (DJF)

El Niño teleconnections (JJA)

La Niña teleconnections (DJF)

La Niña teleconnections (JJA)

Figure 2.1: El Niño) and La Niña observed teleconnections during December, Jan-
uary and February (DJF) and June, July and August (JJA). Source: Climate Predic-
tion Center (http://www.cpc.ncep.noaa.gov, 2004).
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and Halpert 1987, 1989). Figure 2.1 shows El Niño and La Niña observed telecon-

nections during December, January and February (DJF) and June, July and August

(JJA). Some climate models are able to predict these patterns. However, the current

generation of climate models provides forecasts that are only marginally skillful

in the extra-tropics (Graham et al. 2000) and slightly more skillful in the tropics

(Goddard et al. 2001). This is because tropical areas have a moderate amount of

predictable signal, whereas in the mid-latitudes random weather fluctuations are

generally larger than the predictable component of the weather.

Variations in the Pacific SST, however, are not the only sources of predictability

for weather patterns. Warm or cold SSTs in the tropical Atlantic or Indian oceans

can influence seasonal climate in nearby continents. For example, the SST in the

western Indian ocean has a strong effect on precipitation in tropical eastern Africa

(Rocha and Simmonds 1997; Goddard and Graham 1999), and the SST in the tropi-

cal Atlantic affect rainfall in Northeast Brazil (Moura and Shukla 1981). In addition

to the tropical oceans, snow cover and soil wetness also influence seasonal climate

(Douville and Royer 1996; Douville 2003; Dirmeyer 2003). When snow cover is

above average in a specific region for a given season, it has a greater than usual

cooling effect on the air of this region. Soil wetness, which comes into play most

strongly during warm seasons, also has a cooling influence. In summary, all these

factors that affect the atmospheric circulation (SST, snow cover and soil wetness)

constitute the basis of long-term predictions.

Zebiak and Cane (1987) first demonstrated the feasibility of seasonal predic-

tion of ENSO using an idealised dynamical model. Operational seasonal forecast-

ing started experimentally in the mid-1990s. One of the first experimental seasonal

forecasts was produced at the European Centre for Medium-range Weather Fore-

casts (ECMWF) in 1995. Since then several other centres around the world have

also developed seasonal forecasting systems (e.g. Stockdale et al. 1998; Mason et

al. 1999; Kanamitsu et al. 2002; Alves et al. 2002). This successful development

can be attributed to: a) improvements in our understanding of the coupled ocean-

atmosphere system during the second half of the 20th century (Neelin et al. 1998),
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b) the development and use of buoys to observe and measure the evolution of near-

surface waters in the tropical Pacific (McPhaden et al. 1998), and c) successful

predictions of El Niño by prototype coupled ocean-atmosphere models (Zebiak and

Cane 1987). Nowadays, although still experimentally, more than a dozen systems

are routinely used to make predictions and their results are published in the Experi-

mental Long-Lead Forecast Bulletin (http://www.iges.org/ellfb/). Most attention is

given to ENSO because it has such a large global impact (Fig. 2.1) and much sea-

sonal forecast skill derives from ENSO, with non-ENSO years presenting minimal

skill (Barnston et al. 1999a; Landman and Mason 1999).

In terms of climate variables of interest, until recently, most emphasis had been

placed on the prediction of anomalous geopotential heights at 700 hPa (important

level for moisture transport), 500 hPa (important steering level for mid-latitude

storms) and 200 hPa (important diagnostic of upper level divergence and thus con-

vective activity in the tropics). Today, the typical variables examined for prediction

purposes are those that concern society most, i.e. near-surface air temperature, pre-

cipitation, wind and atmospheric pressure.

Seasonal forecasts are potentially valuable to several sectors of society, such

as agriculture (Challinor et al. 2005), tropical health (Morse et al. 2005) and elec-

tricity generation (Palmer 2002). Seasonal forecasts would be more valuable if

their skill were improved. Such an improvement would be particularly beneficial

for the people of developing countries such as those in South America. Brazil, in

particular, has more than 90% of the electricity produced by hydropower stations

(http://www.ons.org.br). The installed hydroelectric capacities in Paraguay, Brazil,

Uruguay, Colombia, and Bolivia constitute more than 60% of the electricity pro-

duction of these countries (http://encarta.msn.com). Hydroelectric power is also

important in Peru, Chile, Ecuador, Suriname and Argentina, where installed hydro-

electricity generating capacity accounts for more than 40 percent of all generating

capacity. Good quality seasonal forecasts allow local governments to make more

effective plans prior to the occurrence of climate anomalies such as those observed

during ENSO events. ENSO is one of the most important modes of climate vari-
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ability affecting precipitation over South America (Ropelewski and Halpert 1987,

1989). Therefore, the improvement of ENSO seasonal forecasts indirectly helps

improve the quality of precipitation forecasts for South America. This thesis fo-

cuses on both, improvement of ENSO and South American precipitation seasonal

forecasts. A review of South American rainfall seasonal forecasting is presented in

Chapter 6, section 6.2.

2.2.2 Current forecast approaches

Seasonal forecasts are currently produced in five different ways. The simplest meth-

ods for seasonal climate prediction are purely based on observations of past and

present climate. The use of the climatological average as the prediction is a valid

starting point. This method is known as climatological forecast or simply clima-

tology. Alternatively, one can assume that a recent seasonal climate will persist

through the upcoming season (Huang et al. 1996). This is the so-called persistence

forecast. The development of prediction methods that are superior to these two sim-

ple approaches is the goal of most climate prediction research. Three distinct mod-

elling approaches are currently used: a) empirical (statistical) relationships based

on historical data, b) two-tier dynamical forecast systems, i.e. using atmospheric

general circulation models (AGCM) forced with predicted or persisted SSTs, or c)

single-tier dynamical forecast systems, i.e. using fully coupled ocean-atmosphere

general circulation models (CGCM) that predict the joint evolution of SST and at-

mospheric flow.

The majority of the empirical forecasting systems use SSTs as predictors (e.g.

Pezzi et al. 2000 and Folland et al. 2001), which are also the fundamental source

of predictability in two-tiered forecast systems (Colman and Davey 2003). Some

empirical modelling studies claim to have improved forecast skill when, in addi-

tion to SSTs, atmospheric predictors are included (Hastenrath et al. 1995; Francis

and Renwick 1998). The comparative skill of forecasts provided by physically-

derived dynamical climate models and empirical models is a subject of much de-
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bate (Berliner et al. 2000b). Recent forecast comparisons suggest that empirical

models perform at least as well as physically-derived dynamical climate models

(Barnston et al. 1999b; Anderson et al. 1999). Some studies argue that empirical

models perform better (e.g. Landsea and Knaff 2000), while other studies claim

that dynamical climate models can provide better forecasts (e.g. Trenberth 1998).

Physically-derived dynamical models have an intrinsic but yet unrealised ad-

vantage. They can be improved in order to acquire a more comprehensive represen-

tation of real world physical processes. Therefore, there is possibility for further im-

provements in prediction skill. Additionally, they are not limited by non-stationarity

of climate or by extreme or unusual (rare) outcomes that may not have occurred in

the available historical record. Empirical models are less complex and have the

advantage of being computationally much cheaper to run. These models, how-

ever, generally assume stationarity of climate and their improvements are limited

to the increase of volume of observational data, a task fundamentally more limited,

although linear trends in time can be empirically modelled. Thus, considerable en-

ergy is now being devoted for improving physically-derived dynamical models at

many centres around the world. Physically-derived dynamical models, however, are

not entirely independent of empirical assumptions. Because of the relatively coarse

spatial resolution used in AGCMs and CGCMs (approximately 200 km resolution),

physical processes occurring on scales smaller than the model’s grid can resolve are

parameterised empirically. Mathematical relationships based on observed data de-

scribe the large-scale aggregate behaviour of fundamentally small-scale processes

such as convection and radiative transfer.

A primary drawback of the current generation of CGCMs is that the SST field

tends to drift away from realistic values as the integration proceeds, thus forcing

unrealistic patterns of atmospheric anomalies. Drift can occur rapidly because of

an imbalance in initial conditions, or slowly, because of faults in internal parameter-

isation in one of the components of the model or from the coupling itself (i.e., flux

errors) (Délécluse et al. 1998). Drift in coupled models leads to systematic biases

in the pattern (i.e., shift of the forecast compared to the observed pattern), ampli-
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tude (i.e., underestimation or overestimation of the intensity of the climate signal)

and variance (i.e., underestimation or overestimation of the spread of the ensemble)

of climate simulations (Smith and Livezey 1999; Anderson 1996).

Goddard et al. (2001) suggest two components of the current climate models

that need to be improved: physics/parameterisation schemes and data assimilation.

For the atmosphere, parameterisation of convection and marine stratus is particu-

larly important for atmospheric energetics and needs to be improved. Improvements

are also necessary for boundary layer parameterisations, which control fluxes that

govern coupling between ocean and atmosphere. For the oceans, the main concern

is the improvement of the parameterisation of mixing processes in surface layers

(first 150 metres). In terms of data assimilation, Goddard et al. (2001) suggest that

most efforts should be concentrated on ocean data assimilation because the ocean

contains the primary memory for time-scales longer than a few weeks. Furthermore,

this is particularly important for seasonal forecasting because the observations are

much more limited in oceanic regions than over land. Therefore, data assimilation

methods are expected to optimise their information content. Methods for assimilat-

ing additional data sources that are presently becoming available (e.g., new satellite

measurements and in situ monitoring of upper-ocean temperatures and salinity via

programmable buoys) also need to be developed/improved.

2.2.3 Ensemble forecasting

For both medium-range (from 3-10 day ahead) and seasonal forecasts, it is common

practice to use the ensemble technique to produce probabilistic forecasts (e.g. Trac-

ton and Kalnay 1993, Molteni et al. 1996; Stockdale et al. 1998). An ensemble is

a set of forecasts that verify at the same time (Sivillo et al. 1997). Each forecast

in the ensemble is referred to as a member. The ensemble members can differ in

their initial boundary conditions and initial atmospheric conditions. The ensem-

ble technique aims to sample uncertainties in the initial conditions used to produce

the forecasts. Ensemble-based predictions lead naturally to probabilistic forecasts.
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However, forecast uncertainty derives not only from model weakness, but also from

inherent unpredictability of the precise state of the atmosphere (Lorenz 1963). Even

with a perfect model, atmospheric internal variability would still impose uncertainty

on the most likely climate outcome. Probabilistic forecasting provides a way of ad-

dressing both sources of forecast uncertainty (i.e. uncertainty in initial conditions

and uncertainty due to atmospheric internal variability) by indicating the probabil-

ity distribution of expected possible outcomes (Kumar et al. 2000). Statistical and

physically-based dynamical methods have been developed for estimating the prob-

ability density function (p.d.f.) of climate outcomes for a coming season, and this

is the ultimate aim of this study.

Figure 2.2 shows an example of ECMWF coupled model ensemble forecasts of

the mean SST anomaly for the Niño-3 region, bounded by 90oW-150oW and 5oS-

5oN in the equatorial Pacific, which is indicated in the top left corner of the figure.

Forecasts were made at weekly intervals from November 1996. Each forecast is for

6 months. The thick dark blue line shows the observed SST anomalies. Although

three forecasts have been made for each week, only one forecast of each week is

shown in order to avoid clutter (red plumes). The onset of El Niño 1997/98 in April

1997 was well predicted by this coupled system. The subsequent evolution was also

well forecast, although a tendency to underpredict the amplitude of the event was

noticeable. These forecast plumes can be calibrated against observations in order

to produce reliable forecast probabilities. At this point it is worth stressing the

distinction between climate model outputs and observed climate/weather. Climate

model outputs should not be treated as observed climate because they contain model

structural and parametric errors, which must be corrected by calibration against

observations. In other words, climate model outputs are variables in model space

that should be calibrated against observations in order to better approximate the

observed climate in real-world observation space. The calibration issue is addressed

in chapter 3.

Given the two distinct approaches to seasonal forecasting, i.e., empirical and

physically-derived dynamical modelling, it is natural to ask whether combining
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Nino 3.4

Figure 2.2: ECMWF coupled model Niño-3 SST anomaly forecasts (red plumes)
made at weekly intervals from November 1996. Each forecast is for 6 months .
The thick dark blue line shows the observed SST anomalies. See text for further
information. Source: ECMWF web page (http://www.ecmwf.int, 2004).

them may produce a forecast with more skill than either forecast considered sepa-

rately. Additionally, the use of ensembles of forecasts not only from a single cli-

mate model but from several different climate models helps to sample uncertainty

in model formulation (Palmer 2000). Different climate models may be skillful in

different regions. Therefore, the calibration and combination of ensembles of fore-

casts from distinct climate models with empirical forecasts (i.e., using all available

information) is likely to better sample forecast uncertainty and, if the individual

forecasts are skillful, to improve forecast quality. This thesis addresses both cali-

bration and combination of ensemble forecasts provided by physically-derived dy-

namical and empirical models in order to produce a reliable p.d.f. for long-range

climate predictions.
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2.2.4 The DEMETER project

DEMETER1 is the acronym of the European Union (EU) funded project entitled

Development of a European Multi-model Ensemble system for seasonal to inTER-

annual prediction (Palmer et al. 2004). The aim of the project was to develop

a well-validated European coupled multi-model ensemble forecasting system for

reliable seasonal to inter-annual prediction.

The fundamental idea behind the multi-model approach used in DEMETER

is that climate prediction imperfections are caused by two main sources of errors:

a) initial conditions and b) model formulation. An ensemble forecast of an indi-

vidual coupled model samples uncertainties in the initial conditions used to pro-

duce the forecast. Uncertainties in the model formulation are not sampled by this

single-model ensemble approach. However, different models use different numer-

ical/parameterisation schemes to represent mathematically the same physical pro-

cesses. Although these models use the same basic equations for the evolution of

climate, the numerical representation of these equations on digital computers dif-

fers from model to model. The multi-model ensemble, consisting of ensemble fore-

casts produced by different climate research institutions, allows the estimation of

uncertainties in model formulation.

The ability of multi-model ensembles of AGCM forecasts to produce more re-

liable probability forecasts of seasonal climate than single-model ensembles has

been addressed by the EU-funded PROVOST (Prediction of Climate Variations on

Seasonal to Inter-annual Time-scales) project and also by the DSP (Dynamical Sea-

sonal Prediction) project in the United States (Palmer and Shukla 2000). PROVOST

had several AGCMs integrated over four months with prescribed observed SSTs.

Nine ensemble members were generated for each model from each starting date.

Despite the use of identical prescribed SSTs, results showed large model-to-model

variability in the predictions of SSTs and other variables such as precipitation and

geopotential height at 500 hPa (Pavan and Doblas-Reyes 2000). Similar results

1Refer to http://www.ecmwf.int/research/demeter for more information about this project.
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have also been found in DSP (Straus and Shukla 2000). This inter-model variabil-

ity made single-model ensemble forecasts generally unreliable. The multi-model

ensemble approach, on the other hand, has produced more reliable forecasts than

any single-model. The skill of both single and multi-model forecasts has been as-

sessed using probabilistic skill scores (Doblas-Reyes et al. 2000; Graham et al.

2000; Palmer et al. 2000). The results showed that multi-model ensemble fore-

casts produced higher scores than any of the single-model ensembles. These results

stimulated the development of the DEMETER project.

The major aim of DEMETER was to advance the concept of multi-model en-

semble predictions. Seven state-of-the-art global coupled ocean-atmosphere mod-

els were used to produce series of multi-model ensemble hindcasts (i.e., retrospec-

tive forecasts made after the events are observed) of common climate variables. The

seven modelling partners are listed in Table 2.1. All partners produced hindcasts

for a common period from 1980 to 2001 (22 years). Three of the seven coupled

models (CNRM, ECMWF and UKMO) produced hindcasts for the period 1959 to

2001 (43 years). All coupled models were run four times per year, starting the first

day of February, May, August and November at 00:00 GMT. Nine ensemble fore-

casts (i.e., nine members) were produced for each coupled model for the next six

months including the starting month. Wind stress and SST perturbations were used

to generate the ensemble for each model. Atmospheric and land-surface initial con-

ditions were taken from the ERA-40 project (ECMWF 40 years re-analysis project).

Additional information about ensemble generation and atmospheric/oceanic initial

conditions can be found in Palmer et al. (2004)

Chapter 3 of this thesis presents statistical techniques for the correction (cali-

bration) of coupled model systematic-errors and the combination of hindcasts pro-

vided by the participants of DEMETER. Chapter 4 examines the ability of ECMWF

coupled model in forecasting the mean SST for the Niño-3.4 region (Fig. 2.2) in

the central Pacific. Chapters 5 and 6 investigate the ability of the DEMETER multi-

model system in reliably forecasting equatorial Pacific SSTs and South American

rainfall anomalies, respectively. The feasibility of applying DEMETER multi-
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Institution Acronym Country
Météo-France
(Centre National de Recherches Météorologiques) CNRM France
European Centre for Research and Advanced
Training in Scientific Computation CERFACS France
Laboratoire d’ Océanographie Dynamique et de
Climatologie LODYC France
Istituto Nazionale de Geofisica e Vulcanologia INGV Italy
European Centre for Medium-Range Weather Forecasts ECMWF International

organisation
Max-Plank Institut für Meteorologie MPI Germany
Met Office UKMO U.K.

Table 2.1: DEMETER modelling partners.

model hindcasts to scales smaller than the scale that can be resolved by global

climate models is also assessed in chapter 6, with a statistical down-scaling appli-

cation example of river flow forecast for the Tocantins river in the north of Brazil.

2.3 Calibration of forecasts

Physically-derived dynamical model predictions are never perfect and therefore cal-

ibration against observations is necessary. The simplest possible method of calibra-

tion is bias-correction. This method consists in determining the historical mean

forecast error, which is then subtracted from the forecast value in order to produce

a calibrated forecast. Calibration can then be considered as a way of obtaining

predictions with average statistical properties similar to those of a reference obser-

vational dataset.

Forecast calibration has first been addressed for the calibration of deterministic

weather forecasts by Glahn and Lowry (1972), who introduced the model output

statistics (MOS) technique. MOS is an objective technique that consists of deter-

mining a statistical relationship between an observable predictand (e.g. temperature

at a particular location) and variables forecast by a physically-derived dynamical

model at some projection time(s) in the future. The MOS technique linearly cor-
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rects systematic model errors via the regression of observed predictands on model

forecast variables. A reasonably long calibration period (for seasonal forecasts this

period is usually more than 10 years), where both predictand observations and ret-

rospective model forecasts are available, is required to construct the calibration

equations. When a new set of forecasts is issued these regression equations are then

used to produce a calibrated forecast. MOS systems have been implemented at a

number of national meteorological centres, including those in Italy (Conte et al.

1980), Britain (Francis et al. 1982), Canada (Brunet et al. 1988), the Netherlands

(Lemcke and Kruizinga, 1988), and the United States (Carter et al. 1989).

Spatial MOS techniques, based on multivariate statistical methods, have also

been developed in order to correct systematic misplacements in model predictions

(Feddersen et al. 1999). In such systems, calibration is achieved by adjusting

model simulations taking into account the linear relationship between the predicted

and the observed spatial patterns. This approach allows spatial predicted patterns to

be shifted around in order to better reproduce the observed patterns. Spatial MOS

calibration has also been used for down-scaling of seasonal predictions (Feddersen

2003; Feddersen and Andersen 2005).

Only the calibration of deterministic forecasts has been discussed so far. How-

ever, as previously mentioned in section 2.2, well-calibrated probabilistic forecasts

are more desirable than deterministic forecasts. Therefore, not only well-calibrated

estimates of the forecast mean values are required but estimates of forecast uncer-

tainty are also required. Forecast uncertainty can be estimated from ensemble of

predictions produced by physically-derived dynamical models (see section 2.2.3).

The spread of the ensemble is usually used to estimate forecast uncertainty. The

mean and the spread of the ensemble can be used to produce probabilistic forecasts.

Generally it is found that dynamical models underestimate the forecast uncertainty

(Atger 2003), making the forecast unreliable in the sense that the range of forecast

values does not contain the observed values. Unrealistic predictions may be due to

biases linked to either model errors or weakness of the method used for ensemble

generation (Atger 2003). Therefore calibration by inflation of the ensemble spread
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is usually performed (e.g. Hamill and Colucci 1998; von Storch 1999) in order to

improve the reliability of the forecasts. Reliability refers to the correspondence be-

tween the forecast probability of an event and the relative frequency of the event,

conditioned upon the forecast probability (see Appendix D for a mathematical def-

inition of reliability). Reliability is a measure of forecast uncertainty correctness

and can be used as a synonym for calibration.

This brief review on forecast calibration reveals two main concerns: a) ad-

justment of predicted patterns to correct systematic errors and misplacements in

model predictions; and b) ensemble spread correction to improve the reliability of

the predictions. However, these two problems are generally tackled separately. For

instance, a recent paper by Doblas-Reyes et al. (2005) has used a spatial MOS

technique to calibrate seasonal climate model predicted patterns and an inflation

technique to improve forecast reliability. Chapter 3 of this thesis proposes a method

that is able to deal with these two problems simultaneously. This method is tested

in three different application examples in chapters 4, 5 and 6.

2.4 Combination of forecasts

2.4.1 Introduction

The rapid development of computers and numerical methods during the last century

stimulated the production of a variety of forecasts in several areas of science. Given

the increasing availability of forecasts it is natural to ask whether combining them

may produce a forecast with more skill than each forecast considered separately.

However, the combining of forecasts is still a subject of much debate and contro-

versy in the literature (see Palm and Zellner 1992; Yang 2004). Although it seems

plausible that combined forecasts are better than individual forecasts (e.g. Clemen

1989; Krishnamurti et al. 1999; Pavan and Doblas-Reyes 2000), some issues have

not yet been completely resolved. Among these issues are questions such as: What

is the “best” method for combining? Some forecasting systems contain larger biases
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(errors) than others. The question of whether or not it is worth combining unbiased

forecasts with biased forecasts when compared with individual unbiased forecasts

has not yet been completely answered. Trenkler and Gotu (2000) compiled a list of

approximately 600 publications on this area during the period from 1970 to 2000.

This brief review does not intend to compile all possible methods. It summarises the

most common combination methods used in economics and atmospheric sciences.

The fact that forecasts need to be combined suggests that all the models are

mis-specified (Chatfield 2001, Section 4.3.5). This indicates that it may be better

to devote more effort to refining the best of the models so that it encompasses the

rest, or alternatively to find a more theoretically satisfying way of combining sev-

eral plausible models, such as for example Bayesian Model Averaging (BMA) -

a methodology that accounts for model uncertainty (Hoeting et al. 1999). BMA

is the weighted average of posterior distributions (see definition in section 3.3) of

different models. It is suggested that BMA based prediction intervals are better cal-

ibrated than single-model based prediction intervals, tending the latter to be usually

too narrow (i.e. predictions are overconfident). A comprehensive review on BMA

is presented by Hoeting et al. (1999). Some guidance regarding the assessment of

prediction intervals for combined forecasts is given by Taylor and Bunn (1999).

The combination issue was addressed long ago by Laplace (1818). As de-

scribed by Stigler (1973), Laplace was interested in comparing the properties of

two estimators of the slope parameter in a problem of linear regression through the

origin. By examining the joint distribution of these estimators he deduced a com-

bining formula, which was a linear combination of the two estimators. However, his

main conclusion was that the method would only be feasible if the error distribution

of the response variable of his linear regression problem was known.

According to Hoeting et al. (1999), one of the earliest model combination

studies in the statistical literature was performed by Barnard (1963) in a paper

investigating airline passenger data. However, the majority of the early work in

model/forecast combination has not been published in statistical journals. In fact,

forecast combination has been most widely applied in economics and atmospheric
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sciences as summarised below.

2.4.2 Forecast combination in economics

Reid (1968, 1969) and Bates and Granger (1969) are often referred to as the sem-

inal works on combining forecasts in economics. They were the first to develop a

general analytical linear model for combining forecasts in an optimal way and to

apply their techniques to real world situations. Their work provided the initial im-

petus to the development of theory in the combination of forecasts. A great number

of articles have been published since then, and as suggested by de Menezes et al.

(2000) these numbers still continue to grow substantially. Clemen (1989), Granger

(1989), Diebold (1998, Section 12.3) and de Menezes et al. (2000) all provide

comprehensive reviews on combining economic forecasts.

Clemen (1989) lists more than 200 studies in the form of an annotated bibli-

ography, which contributed to knowledge regarding the combination of forecasts,

either through theory or application. The main conclusion of this paper is that fore-

cast accuracy can be substantially improved through the combination of multiple

individual forecasts. Furthermore, it also suggests that the simple arithmetic mean

of individual forecasts often works reasonably well when compared to more com-

plex combinations. De Menezes et al. (2000) review recent studies on forecast

combination and also provide guidance on the use of combined forecasts not only

based on the accuracy of forecasts but also on three other properties of the fore-

cast error: variance, asymmetry and serial correlation. In an attempt to answer the

question of which was the “best” method for combining forecasts, they concluded

that the most appropriate combination method depends on the choice of the forecast

error property (variance, asymmetry or serial correlation) and sample size.

A summary of the seven well-established forecast combination methods most

commonly used in economics is given by de Menezes et al. (2000). All these

methods adopt the linear combination of forecasts in which each forecast has a pre-

estimated weight that all add up to one. These seven weighting methods are as
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follows:

a) Simple average.

All forecasts have the same weights equal to 1/m, where m is the total number

of forecasts to be combined. As suggested by Clemen (1989), this forecast often

performs as well as more sophisticated methods.

b) Outperformance.

This method was proposed by Bunn (1975). The weights are probabilities

assessed and revised in a Bayesian manner. Each individual weight is interpreted

as the probability that its respective forecast will perform the best (in the smallest

absolute error sense) on the next occasion. Each probability is estimated as the

fraction of occurrences in which its respective forecasting model has performed the

best in the past.

c) Optimal.

This seminal method for combining forecasts was proposed by Bates and Granger

(1969). The weights are determined in order to minimize the combined forecast

error variance. Diebold and Lopez (1996) refer to this method as the “variance-

covariance” method because the weights are obtained using the covariance matrix

of forecast errors. Granger and Ramanathan (1984) showed that the method is

equivalent to a least squares regression in which the constant is suppressed and the

weights are constrained to sum to one. This approach requires the covariance ma-

trix of forecast errors to be properly estimated. In practice this matrix is often not

stationary, in which case it is estimated on the basis of a short history of forecasts

and thus the method becomes an adaptive approach to combining forecasts.

d) Optimal (adaptive) with independence assumption.

The covariance matrix of forecast errors is restricted to be diagonal, comprising

just the individual forecast error variances (Bunn 1985).

e) Optimal (adaptive) with restricted weights.

As well as the diagonal restriction, individuals weights are restricted not to be

outside the interval [0,1] (Newbold and Granger 1974).
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f) Regression.

The combined forecast is obtained via ordinary least squares (OLS) regression

with the inclusion of a constant (Granger and Ramanathan 1984).

g) Regression with restricted weights.

A least squares regression with the inclusion of a constant is performed but the

weights are constrained to sum to one (Holden et al. 1990).

2.4.3 Forecast combination in atmospheric sciences

Sanders (1963) was one of the first studies in the meteorological literature to discuss

the possibility of combining forecasts to produce probability forecasts. By averag-

ing probability forecasts of two individual forecasts, Sanders (1963) demonstrated

using the Brier score (Brier 1950) that the combined probability forecast performed

better than either individual forecast. Similar results were obtained by Stael von

Holstein (1971) and Winkler et al. (1977) while studying the performance of var-

ious probability consensus approaches. Clemen (1985) and Clemen and Murphy

(1986a, b) developed Bayesian forecast combination techniques to determine the

contributions of the different forecasts used for the combination. More recently

Rajagopalan et al. (2002) and Robertson et al. (2004) used Bayesian methods for

combining climate forecasts from three different climate models, with the aim of

producing better categorical climate forecasts. They concluded that the skill of the

multimodel combined forecast was significantly better than the climatological fore-

cast in only a few regions of the globe. However, the skill of the Bayesian combined

forecast was found to be better than the skill of individual model forecasts and also

better than the simple average of forecasts from different models.

Other studies have linearly combined deterministic forecasts. Thompson (1977)

was the first to show that a simple linear combination of two independent 24 hour

weather predictions with optimal weights, obtained when the mean square error

of the combined forecast was minimised, could reduce the forecast error variance

by about 20%. Fraedrich and Leslie (1987) also noted that by linearly combining
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stochastic short-range forecasts with numerical model weather predictions it was

possible to obtain significantly better prediction skill. Fraedrich and Smith (1989)

then extended this approach to the seasonal time scale, with a forecast lead-time of

up to three months. They linearly combined an empirical forecast with a determin-

istic model forecast for predicting tropical Pacific SST anomalies. It was shown

that by minimising the combined forecast mean square error (MSE) considerable

improvement in MSE skill can be obtained. More recently, Metzger et al. (2004)

extended the Fraedrich and Smith (1989) combination scheme to predict Niño-3

index anomalies for lead times up to 24 months. It was found that the linear combi-

nation of empirical and deterministic forecasts provided improvement in prediction

skill if the predictions of individual schemes were independent and of comparable

skill. However, only modest skill improvements were found in practice.

Krishnamurti et al. (1999, 2000a,b, 2001) and Stefanova and Krishnamurti

(2002) have recently introduced the multi-model super-ensemble method for com-

bining numerical weather and climate forecasts. This method, which linearly com-

bines ensemble forecasts from different models by minimising the mean square

error of the combined forecast, has also been used by Pavan and Doblas-Reyes

(2000). It has been demonstrated that the multi-model super-ensemble invariably

performs better than any independent model. A simplified version of the multi-

model super-ensemble method has been proposed by Ziehmann (2000) for medium-

range weather forecasts. In this method deterministic ensemble forecasts from dif-

ferent models are assigned exactly the same weight in the combination procedure.

In other words, the forecast is given by the simple multi-model ensemble mean.

Mylne et al. (2002) refers to this method as the “poor man’s ensemble”. Ziehmann

(2000) has shown that the “poor man’s ensemble” performs better than the ensem-

ble of an individual model.

Kharin and Zwiers (2002) summarise several methods commonly used in at-

mospheric science for combining forecasts from different models. These methods

are based on the standard multiple linear regression method with the regression

coefficients being subject to some constraints. They are unbiased since the mean
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forecast biases are removed by the regression. Forecast biases are well-known fea-

tures of climate models (e.g. Stockdale 1997) and their removal is essential for any

statistical forecast improvement scheme. According to Kharin and Zwiers (2002)

the three most often used unbiased combination methods are as follows:

a) The bias-removed multimodel ensemble mean forecast.

The combined forecast is produced by taking the difference between the multi-

model ensemble mean and the multi-model mean bias. The multi-model ensemble

mean is the mean of a collection of forecasts, each of which is produced with a

different model. The multi-model mean bias is the (past) historical mean forecast

error, estimated with all forecast that compose the multi-model. This method is

equivalent to the simple average method used in economics.

b) The regression-improved multimodel ensemble mean forecast.

The combined forecast is obtained by linearly regressing the multimodel en-

semble mean against the observations.

c) The regression-improved multimodel forecast.

The combined forecast is produced by the OLS regression of different model

forecasts with no constraints on the regression coefficients. This method is equiva-

lent to the regression method used in economics.

More recently Goddard et al. (2003) introduced the multi-model ensembling

approach for refining (calibrating) and combining probability forecasts from dif-

ferent atmospheric general circulation models. They found that improved forecast

reliability can be achieved by calibrating the model probabilities, estimated from

an ensemble of forecasts, prior to combining. The calibration is based on model

history. Using ensemble means, conditional probabilities are determined from past

model performance. After calibration the combination of forecasts is performed

using two methods:

d) Pooled Multi-Model ensemble.

Each model is weighted equally. This is again an equivalent method to the

simple average used in economy.
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e) Bayesian Multi-Model ensemble.

Optimal weights are determined for each model relative to climatology by max-

imizing a likelihood measure. This Bayesian method is described in the paper by

Rajagopalan et al. (2002).

Finally, as described by Goddard et al. (2001), climate forecasts can still be

combined subjectively using a method known as

f) Consensus forecasting.

Consensus forecasting consists in subjectively blending forecasts for adjacent

areas and combining different forecast information for the same regions. Subjec-

tive forecast combination has become an important area of development with the

advent of regional fora (e.g. Drought Monitoring Centre 1998), and is used in

the construction of the International Research Institute for Climate Prediction (IRI)

“net assessments” (Mason et al. 1999), and the National Centers for Environmental

Prediction (NCEP) seasonal forecasts (van den Dool et al. 1998). Consensus fore-

casts are probabilistic, with probabilities being usually attributed to three categories

(below normal, normal and above normal). Although the subjective process can be

improved by implementing objective combination techniques such as the one pro-

posed in chapter 3 of this thesis, the consensus forecast has some practical value.

It permits a simple combination of all available forecasts when full or compatible

verification data is unavailable. The risk is that forecasts with minimal or no skill

can affect consensus adversely, but the approach is supportable on the basis that the

simple average of forecasts is often an improvement on any single forecast product.

2.5 Summary

This chapter has presented an overview on seasonal forecasting, a brief description

of the DEMETER project, and a literature review on forecast calibration and com-

bination focussed in economics and atmospheric sciences. The main findings are

that:

• Forecasts need calibration against observations to correct systematic errors
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in model predictions

• Forecasts can be combined in many different ways

• Combined forecasts are often more skillful than individual forecasts

• There is an overlap of methods used in economics and atmospheric sciences

• The multiple linear regression is widely used in both areas

• Although not as popular as multiple linear regression, another well-established

method is the Bayesian combination of forecasts. As revealed by Clemen (1989)

this method has been widely used in statistics and economics since the mid-1960s,

when the paper by Geisser (1965) was published. In atmospheric sciences, the

Bayesian approach for combining forecasts was introduced in the mid-1980s by

Epstein (1985) and Clemen (1985). Nevertheless, it has not been much explored

after that until recent papers by Berliner et al. (2000a), Berliner et al. (2000b) and

Rajagopalan et al. (2002).



Chapter 3

Methodology

3.1 Aim

The aim of this chapter is to provide the technical knowledge necessary for the

implementation of the Bayesian method, which is used in chapters 4, 5 and 6 of

this thesis for the calibration and combination of seasonal climate predictions of an

ENSO index (Niño-3.4), Equatorial Pacific SST and South American rainfall.

3.2 A unified framework for forecasting

3.2.1 The forecasting process

Figure 3.1 shows a highly simplified (low-dimensional) schematic of the forecasting

process. It is important to recognise that observable variables (e.g. temperature at

a particular location) are not the same mathematical quantities as model grid point

variables. The state vector of the real atmosphere moves dynamically around q-

dimensional observation state space whereas the model state vector moves around

p-dimensional model state space. To initialise models with information from obser-

vations, observations in observation state space have to be mapped into model state

space using a procedure known as data assimilation (Daley 1991; Courtier 1997;

Bouttier and Courtier 1999). A set of numerical model predictions can then be

27
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Figure 3.1: Schematic showing the forecasting process. Time ti is the initial time
and time tf is the final forecast target time. The evolution operator (N) in observa-
tion space is not known and so numerical forecasting approximates it by mapping
observations into model space (H), evolving model states in time in model space
via the model operator (M), and then mapping model predictions back into obser-
vation space (G). Environmental forecasting is particularly challenging because of
the complexity and high dimensionality of the model and observation spaces.

made to produce an ensemble of possible future model states – a procedure known

as ensemble prediction (Molteni et al. 1996; Stephenson and Doblas-Reyes 2000;

Palmer 2002; and references therein).

It is often naı̈vely assumed that ensembles of model predictions are probability

forecasts of the real world. Model variables are generally neither representative nor

unbiased estimates of site-specific observable variables. Instead, model predictions

should be considered as proxy information that can be used to infer the probability

of future observables (Wilks 2000; Glahn 2004). The skill of forecasts depends on

their ability to discriminate between observable outcomes (known as forecast res-

olution; Jolliffe and Stephenson 2003) rather than their ability to match identically

observations. For example, temperature forecasts that distinguish between hot and
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cold days but that are always 2◦C too warm are more skillful than unbiased forecasts

that can not distinguish between hot and cold days. To make inferences, one needs

a probability model that can give the probability of observable quantities when pro-

vided with model forecast data (e.g. regression). There needs to be a procedure

for mapping the model predicted state back into observation space. To recognise

its analogous role to data assimilation, this important final step will be referred to

here as forecast assimilation. Forecast assimilation incorporates a wide diversity

of previous methods such as bias-correction, statistical down-scaling, model output

statistics, perfect prognosis, etc. (Wilks 1995). As apparent in Fig. 3.1, there is a

strong analogy/duality between data assimilation and forecast assimilation, which

will be elaborated mathematically in the following sections of this chapter.

To summarise, three important steps are needed in order to find the probability

density function p(yf |yi) of a future observable variable yf : data assimilation to

find p(xi|yi), model ensemble prediction to find p(xf |xi), and forecast assimilation

to find p(yf |xf). The standard statistical symbol ’|’ denotes “given” (conditional

upon). The desired probability density p(yf |yi) is obtained by integrating over

model states using a Monte Carlo approximation (a carefully chosen ensemble).

For this to be a good approximation, the initial ensemble states should be sampled

from the distribution p(xi|yi) – a condition not always satisfied in the design of

operational ensemble systems (Stephenson and Doblas-Reyes, 2000).

3.2.2 The analogy with data assimilation

Whereas data assimilation is concerned with how best to estimate the probability

density function of model state xi given observational data yi, the dual problem of

forecast assimilation is concerned with how best to estimate the probability den-

sity function of a future observable yf given model prediction data xi. Both these

activities involve the estimation of conditional probabilities – p(xi|yi) for data as-

similation and p(yf |xf ) for forecast assimilation. The resulting distributions are

conditioned on the available data such as observations yi for data assimilation and
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model predictions xi for forecast assimilation. The identity known as Bayes’ the-

orem shows how to obtain these conditional probabilities from the unconditional

probability distributions p(xi) and p(yf) (Lee 1997; Gelman et al. 1995). For ex-

ample, data assimilation uses Bayes’ theorem in the form

p(xi|yi) =
p(yi|xi)p(xi)

p(yi)
(3.1)

to update the background distribution p(xi) to obtain the conditional distribution

p(xi|yi) (Lorenc 1986; Bouttier and Courtier 1999). In other words, data assim-

ilation consists of updating the initial state (first guess) distribution from p(xi) to

p(xi|yi) when new observational data yi become available. Similarly, forecast as-

similation uses Bayes’ theorem in the form

p(yf |xf ) =
p(xf |yf)p(yf)

p(xf )
(3.2)

to update the climatological distribution p(yf) to obtain the conditional distribution

p(yf |xf ). Initial and final time subscripts are suppressed in subsequent equations.

For perfect models with no prediction errors or for forecasts with very short lead

times, the data assimilation equations can be used to perform forecast assimilation

(i.e. perfect prognosis). However, for all other model predictions containing errors

then forecast assimilation is required in addition to data assimilation. From this it

can be seen that the true role of ensemble model predictions is to provide data x that

can be used to update the probability distribution of the observable variable from

p(y) to p(y|x) rather than to provide an estimate of the marginal distribution p(x).

3.3 The Univariate Normal Model

This section introduces the Bayesian method for the calibration and combination of

single point in space (index) forecasts that is used in chapter 4. The Bayesian ap-

proach has been discussed for decision making in applied meteorology by Epstein

(1962) and for statistical inference and prediction in climatology by Epstein (1985).
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It has also successfully been used in other areas such as hydrology (e.g. Krzyszto-

fowicz 1983; Krzysztofowicz and Herr 2001) and recently in climate studies (e.g.

Berliner et al. 2000a,b and Rajagopalan et al. 2002). The Bayesian method is a

consistent probabilistic approach that can be used for combining historical (clima-

tological) information y with physically-derived dynamical model ensemble mean

forecasts x̄. It is based on rigorous probability theory and so can provide well-

calibrated probability forecasts.

With no access to a physically-derived coupled model ensemble mean forecast

x̄, the only possible probabilistic assessment about the observable variable y has to

be based on the assumption that future values of y will behave like they did in the

past. For example, the probability distribution of y can be estimated by using the

climatological probability density function p(y) estimated from historical observa-

tions. In Bayesian theory p(y) is known as the prior distribution and encapsulates

prior knowledge about likely possible values of y – from past experience not all

values of y were found to occur equally likely. More informative prior distributions

than the climatological distribution, derived for example from empirical models can

also be defined.

However, when a particular ensemble mean forecast x̄ = xm (obtained as the

mean of m members of an ensemble forecast) is known for the future, it is then

possible to update the prior p(y) to obtain the conditional posterior distribution

p(y|x̄ = xm). In other words, this is the probability distribution of y given that the

forecast x̄ = xm is known. Conditioning on forecasts helps to reduce the uncer-

tainty about future values of y (Jolliffe and Stephenson, 2003; their chapter 9). This

procedure is illustrated schematically in Fig. 3.2 for normal p.d.f.’s. The normal

prior probability density (short-dashed line) when combined with a normal likeli-

hood probability density (dashed line) yields a normal posterior probability density

(solid line). The posterior distribution p(y|x̄ = xm) is found from the prior p(y) by
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making use of Bayes’ theorem in the form

posterior
︷ ︸︸ ︷

p(yt|x̄t = xm) =

likelihood
︷ ︸︸ ︷

p(x̄t = xm|yt)

prior
︷︸︸︷

p(yt)

p(x̄t = xm)
(3.3)

where yt is the observable variable at time t and xm is a particular value of ensemble

mean forecast at time t. Note that both the posterior distribution and the likelihood

function are considered to be functions of yt. Finally, p(x̄t = xm) does not depend

on yt and therefore only plays the role of a normalising constant (Lee 1997).
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Figure 3.2: Prior distribution (short-dashed line), likelihood (dashed line) and pos-
terior distribution (solid line). Source: Coelho et al. 2004.

The likelihood p(x̄|y) of obtaining an ensemble mean forecast x̄ given obser-

vations y is an essential ingredient in the Bayesian updating procedure that can

be estimated by stratifying past ensemble mean forecasts (hindcasts) on past ob-

servations. The likelihood provides a convenient summary of the calibration and

resolution of past forecasts (Jolliffe and Stephenson 2003).

This Bayesian approach has several important advantages over approaches that
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rely solely on sampling ensembles of physically-derived coupled model forecasts

(e.g. Stockdale et al. 1998 and Taylor and Buizza 2003). Firstly, the Bayesian ap-

proach appropriately incorporates prior information about the distribution contained

in historical observations (i.e., it allows combination). Secondly, the likelihood pro-

vides a natural way of correcting for biases in the model forecasts that often occur in

physically-derived coupled models (i.e., it allows calibration). Thirdly, the result-

ing well-calibrated posterior distribution allows one to then generate an arbitrarily

large sample (a mega-ensemble) of possible climate realizations, of use for example

in scenario studies of risk and forecast value (Jolliffe and Stephenson 2003; their

chapter 8).

The Bayesian method has three main steps: a) choice of the prior distribution;

b) modelling of the likelihood function; and c) determination of the posterior dis-

tribution.

a) Choice of the prior distribution.

For simplicity, it has been assumed that the prior distribution is normal (Gaus-

sian)

yt ∼ N(µot, σot
2) (3.4)

where µot is the mean and σot
2 is the variance of a normal (N) probability distribu-

tion. The standard statistical symbol ∼ denotes “is distributed as”. The mean µot

and the variance σot
2 can be estimated using for example climatological (historical)

data of y. More sophisticated empirical models can be used to estimate these two

parameters (see an example in section 4.2.2 of chapter 4). When no information

about y is available one can assume a uniform distribution with infinite σot
2 for the

prior.

b) Modelling of the likelihood function.

As for the prior distribution, for simplicity, it has been assumed that the like-

lihood distribution is normal (Gaussian). Figure 3.3 illustrates how the likelihood

is modelled. It shows a scatter plot of raw (uncorrected) ECMWF coupled model
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ensemble forecasts versus the observed December Niño-3.4 index for the period

1987-1999. Ensemble means xm of m = 9 ensemble members are depicted us-

ing large open circles. The dashed line is what one expects for perfect forecasts

in which the forecast values are identical to the observed values. The likelihood

p(x̄t | yt) is modelled by performing a linear regression of the ensemble mean

forecasts (x̄t) on matching observations (yt):

x̄t | yt ∼ N(α + βyt, δ) (3.5)

where α and β are the intercept and slope parameters, respectively. The constant

variance δ is estimated by the mean of the squared regression residuals

δ̂ =
1

n− 2

n∑

t=1

(x̄t − α̂− β̂yt)
2 (3.6)

where n is the length of the time series and the hat symbol denotes an estimated

parameter.

The solid line in Fig. 3.3 is the best fit linear regression between raw ensemble

mean values x̄t and observations yt, corresponding to estimates of α̂ = 6.65oC, β̂

= 0.73, and δ̂ = 0.09oC2. This fitted line is the likelihoood function used for the

calibration of the forecasts. Note, however, that rather than regress the forecasts x

on the observations y one might perform the inverse regression of the observation

y on the forecasts x in order to calibrate the forecasts. This inverse regression is

discussed in Appendix A.
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Figure 3.3: December Niño-3.4 index likelihood model assuming constant variance
δ for the ensemble mean (x̄) as formulated in Eqn. 3.5. Parameter estimates are
α̂ = 6.65oC, β̂ = 0.73 and δ̂ = 0.09oC2 (R2 = 0.93). Each black dot is one of the
m = 9 ensemble members. Big open circles are ensemble means x̄ = xm. The solid
line is the linear regression fit between ensemble means x̄ = xm and observations
y. The dashed line is what would be obtained for perfect forecasts. Adapted from
Coelho et al. 2003.
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c) Determination of the posterior distribution

From Bayes’ theorem (Eqn. 3.3) it can be shown that for a normal prior distri-

bution yt ∼ N(µot, σ
2
ot) and normal likelihood x̄t|yt ∼ N(α+β yt, δ), the posterior

distribution is also normal (Lee 1997). The resulting normal posterior distribution

is given by

yt | x̄t ∼ N(µt, σ
2
t ) (3.7)

with the mean µt and the variance σ2
t equal to

1

σ2
t

=
1

σot
2

+
β2

δ
(3.8)

µt

σ2
t

=
µot

σot
2

+
β2

δ

(
x̄t − α

β

)

. (3.9)

A derivation of Eqns. (3.8) and (3.9) is presented in Appendix B. The inverse of

the variance is known in statistics as the precision. Equation (3.8) states that the

precision of the posterior distribution
(

1
σ2

t

)

is exactly equal to the precision of the

prior distribution
(

1
σot

2

)

plus the precision of the ensemble system
(

β2

δ

)

. Unbiased

forecasts would have precision 1
δ
. However, forecasts are not unbiased and so the

precision is instead given by the term β2

δ
.

Equation (3.9) gives the posterior combined mean (µt) as the precision weighted

sum of the prior mean (µot) and the physically-derived raw (uncorrected) coupled

model ensemble mean (x̄t). Note that the precision of the prior distribution and the

precision of the ensemble system are weights for the prior mean and uncorrected

ensemble mean, respectively. The mean bias of the ensemble system is corrected

by the difference between x̄t and α divided by the re-scaling factor β.

In practice, in order to avoid artificial skill, all estimated parameters are ob-

tained here using a cross-validation “leave one out” method (section 6.3.6, Wilks

1995). To produce a forecast for time t, only data at other times (years) different

from t are used to estimate model parameters and errors.
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3.4 The Multivariate Normal Model

3.4.1 Data assimilation and forecast assimilation equations

This section presents the equations of the Bayesian multivariate model that is used

in chapters 5 and 6 for the calibration and combination of one-dimensional and

two-dimensional forecasts. This model is referred here to as forecast assimilation.

Both variational data assimilation and forecast assimilation are based on multivari-

ate normal models. Given the analogy/duality between them, as described in section

3.2.2 of this chapter, it is useful to start by briefly reviewing the key equations in

data assimilation. As noted in the previous sections of this chapter, the practical

implementation of Bayes’ theorem requires the specification of a suitable probabil-

ity model. For the sake of generality, consider a p-dimensional model space and a

q-dimensional observation space where p, q ≥ 1. The least-squares estimation used

in variational assimilation is equivalent to maximum likelihood estimation when

the p × 1 model state x and the q × 1 observations y given a model state x are

(multivariate) normally distributed:

x = xb + εB (3.10)

y = Hx+ εR (3.11)

where the p× 1 vector xb is the background model state (the first guess) and εB and

εR are (multivariate) normally distributed errors with zero mean and covariances B

and R, respectively. The matrix H is known as the observation or interpolation

operator that predicts observables (e.g. satellite-measurable radiances) from model

states (e.g. vertical temperature profiles). These equations can be written more

informatively in probability notation as follows:

x ∼ N(xb, B) (3.12)

y|x ∼ N(Hx,R) (3.13)
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where ∼N(µ,Σ) means distributed as a multivariate normal distribution with mean

µ and covariance Σ. By use of Bayes’ theorem (Eqn. 3.1), it can then be shown

(e.g. Section 4, Bouttier and Courtier 1999) that these equations lead to

x|y ∼ N(xa, A) (3.14)

with the analysis model state xa and the analysis error covariance A given by

xa = xb +K(y −Hxb) (3.15)

A = (I −KH)B. (3.16)

The (p× q) matrix K = BHT (HBHT +R)−1 is known as the gain/weight matrix.

Therefore, observation data y can be used to update the background model state

xb to give an improved analysis estimate xa provided one can estimate matrices

B, R, and H . The analysis state xa is the maximum a posteriori (MAP) estimate

(Robert 2001) that maximises the probability density p(x|y). In other words, the

MAP estimate xa can be found by minimising −2 log p(x|y) which is given up to a

constant by

Jx|y = (x− xb)
TB−1(x− xb) + (y −Hx)TR−1(y −Hx). (3.17)

The quantity Jx|y is known in variational (e.g. 3-d VAR) data assimilation as the

cost function and various sparse matrix algorithms can be used to find the value of

x that minimises this function.

The equations for forecast assimilation of normally distributed predictions are

the dual of those for data assimilation with x and y interchanged. One assumes

that the observable state and the model predictions given an observable state are

(multivariate) normally distributed:

y = yb + εC (3.18)

x = G(y − y0) + εS (3.19)
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where yb is the background observable state (e.g. the climatological mean value

or a persistence forecast) and εC and εS are (multivariate) normally distributed er-

rors with zero mean and background observable covariance C and forecast error

covariance S, respectively. For generality, a bias term y0 has been included to take

account of the mean bias often found in model predictions 1. The (p × q) matrix

G is the forecast operator (or likelihood) that can be estimated by regression of

the model predictions on the observed values. The equations can be rewritten more

succinctly as the following probability models:

y ∼ N(yb, C) (3.20)

x|y ∼ N(G(y − y0), S). (3.21)

Then Bayes’ theorem (Eqn. 3.2) can be used to show that

y|x ∼ N(ya, D) (3.22)

with the forecast observable state ya and the forecast error covariance D given by

ya = yb + L(x−G(yb − y0)) (3.23)

D = (I − LG)C = (GTS−1G+ C−1)−1. (3.24)

The (q × p) matrix L = CGT (GCGT + S)−1 is the forecast gain/weight matrix.

Therefore, model prediction data x can be used to update the background observ-

able state yb (e.g. the climatological mean) to give an improved forecast of the

observable ya provided one can estimate matrices C, S, and G and bias vector y0.

The forecast observable state ya is the MAP estimate that maximises the probability

1 a bias term is not required for variational data assimilation because the non-linear observation
operator H(x) is linearised about x = xb to obtain the unbiased equation y′ = Hx′ +O(x′2) where
y′ = y −H(xb) and x′ = x − xb.
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p(y|x) or alternatively minimises −2 log p(y|x) given up to a constant by

Jy|x = (y − yb)
TC−1(y − yb) (3.25)

+ (x−G(y − y0))
TS−1(x−G(y − y0)).

The quantity Jy|x is the cost function that needs to be minimised for forecast assim-

ilation. It is the sum of two penalty terms: one that penalises departures y−yb from

the background observable state and one that penalises departures x − G(y − y0)

from calibrated model predictions.

3.4.2 Estimation and the need for dimension reduction

For multivariate normal forecast assimilation one needs estimates of vectors yb and

y0 and matricesC, S, andG. The vector yb and matrixC are parameters of the prior

observable distribution y ∼ N(yb, C). Reliable estimates of these parameters can

be most simply obtained by calculating the climatological mean and sample covari-

ance of past observations. More precise estimates of the prior can be obtained using

empirical forecasts (if available) and so empirical forecasts can be elegantly merged

with numerical model predictions (Coelho et al. 2004). The other parameters are

estimated by performing a multivariate linear regression of the model predictions on

the observations for a period when both predictions and observations are available

(the calibration period). For model predictions in chapter 5 the seven ensemble

mean forecasts obtained from the seven DEMETER models are used rather than

63 (7 × 9) individual forecasts. In chapter 6 three ensemble mean forecasts from

ECMWF, CNRM and UKMO models are used. The slope G, bias vector y0, and

the prediction error covariance S can be estimated using ordinary least squares es-

timation:

G = SxyS
−1
yy (3.26)

y0 = −(x− yGT )G(GTG)−1 (3.27)

S = Sxx − SxyS
−1
yy S

T
xy (3.28)
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where Sxx is the (p×p) covariance matrix of the model predictions, Syy is the (q×q)

covariance matrix of the observables, and Sxy is the (p×q) cross-covariance matrix.

Calibration of gridded forecasts is particularly difficult because of the large di-

mensionality of gridded data sets compared to the number of independent forecasts

and the strong dependency between values at neighbouring grid points. When the

matrix Syy is poorly conditioned (or even rank deficient, e.g. when q > n, where

n is the length of the time series that is used for calibration) then the estimation of

G = SxyS
−1
yy becomes problematic (or impossible). Furthermore, for L to be well

estimated then GCGT + S also has to be well-conditioned. Put simply, one cannot

simultaneously calibrate many predictions if one has only a small historical record

of calibration data. This problem becomes even worse for multi-model predictions

where the number of grid points is multiplied by the number of models (e.g. in

the example of chapter 5, p = 7 × 56 = 392). To avoid this problem one can use

various multivariate dimension reduction techniques to reduce the dimensionality

of the data sets. Instead of considering grid point variables, one can project the

data onto a small set of spatial patterns to obtain a small number of indices. For

example, one could perform principal component regression by using the leading

principal components of the model predictions and the observations (Derome et al.

2001; Jolliffe 2002, his section 8.1). Alternatively, one can use either maximum co-

variance analysis (MCA) [sometimes referred to as SVD] or Canonical Correlation

Analysis (CCA) to extract leading co-varying modes from the model prediction

and observation data (von Storch and Zwiers 1999). An MCA based regression

approach has been used in previous studies to improve single model seasonal fore-

casts (Feddersen et al. 1999, Feddersen 2003). In the examples of equatorial Pacific

SSTs and South American rainfall of chapters 5 and 6 both MCA and CCA dimen-

sion reduction approaches with up to 8 retained modes have been tested. It has been

found that MCA with 3 modes gave the best cross-validated forecast results, which

are shown in these two chapters.

In practice, forecast assimilation is performed as follows:

1. In order to produce cross-validated forecasts on data not used in the estima-
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tion, the year to be forecast is removed from the data set.

2. The time mean is subtracted from the remaining observations and the model

predictions to make anomalies stored in a (n × q) data matrix Y of observa-

tions and a (n × p) data matrix X of model predictions (in the example of

chapter 5 n = 21 q = 56 and p = 392).

3. An SVD analysis is performed of the matrix Y TX = UΣ∗V T to determine

the leading MCA modes.

4. In order to estimate the prior distribution, the background observable covari-

ance matrix C is calculated for the k = 3 leading MCA modes of the ob-

servations. The mean of the prior distribution yb = 0 since we are treating

anomalies about the long-term climatological mean.

5. A multivariate regression of the k-leading MCA model prediction modes on

the k-leading MCA observation modes is performed in order to estimate G,

y0, and S.

6. The estimated quantities C, yb, G, y0, and S are then used to forecast the

observations of the removed year using model predictions from that year.

3.4.3 The special case of no additional prior information

In the special case when the prior is estimated over the same calibration period used

to estimate the prediction error covariance S (i.e. no extra information is used to

estimate yb or C) then forecast assimilation gives the same forecasts as obtained by

ordinary least squares multivariate regression of the observations on the predictions

y = y + SyxS
−1
xx (x− x) (3.29)

The proof of this can easily be derived by noting that S = Sxx − GSyyG
T and

so when C = Syy one obtains L = SyyG
T (GSyyG

T + Sxx − GSyyG
T )−1 which
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simply becomes L = SyxS
−1
xx . Multivariate regression of observations on predic-

tions is the basis of the MOS approach to calibration that has been used in several

previous multi-model studies (Pavan and Doblas-Reyes 2000; Kharin and Zwiers

2002; Doblas-Reyes et al. 2005). Forecast assimilation incorporates this approach

as a special case when the prior is estimated using only the calibration data. An

important difference in forecast assimilation is that one models the likelihood by

regression of the model predictions on the observables rather than directly mod-

elling the observables as functions of model predictions. The likelihood regression

in forecast assimilation minimises uncertainty in the model predictions for given

observations whereas the MOS approach minimises uncertainty in observations for

given model predictions. A discussion about these two different ways of performing

the regression (classical and inverse) is presented in Appendix A.

3.5 Summary

This chapter has presented a unified framework for forecasting. This framework

has been named forecast assimilation due to its analogy/duality with data assimi-

lation. The chapter still introduced the univariate Bayesian model that is used in

chapter 4 for the calibration and combination of empirical and physically-derived

coupled model forecasts of Niño-3.4 index forecasts (i.e., forecasts for a single

point in space). Additionally, this chapter has generalised the single point in space

Bayesian model for the calibration and combination of multivariate forecasts [i.e.,

one-dimensional forecasts and spatial field two-dimensional forecasts]. The mul-

tivariate Bayesian model is used in chapters 5 and 6 for the calibration and com-

bination of multi-model forecasts of equatorial Pacific SSTs and South American

rainfall.



Chapter 4

A zero-dimensional example:

Niño-3.4 forecasts

4.1 Aim

The aim of this chapter is to test the use of the univariate Bayesian normal model in-

troduced in chapter 3 (section 3.3) for the calibration and combination of empirical

and coupled model Niño-3.4 index forecasts for December at a 5-month lead time.

This method merges valuable past (historical) information with physically-derived

dynamical coupled model ensemble forecasts to produce well-calibrated estimates

of the mean forecast value and its respective uncertainty.

4.2 Introduction

This chapter examines forecasts of an ENSO index (Niño-3.4), which is the mean

SST inside the area delimited by the parallels of 5oN and 5oS and the meridians

of 120oW and 170oW in the equatorial Pacific. ENSO is an important large-scale

ocean-atmosphere coupled phenomenon that has large impacts on the climate of

many regions around the world (Horel and Wallace 1981; Stoeckenius 1981; Ro-

pelewski and Halpert 1986, 1987 and 1989). Since the strong El Niño episode in

1982/83, many efforts have been made to produce routine forecasts of tropical Pa-

44
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cific SSTs. Long-lead forecasts help local governments and industries plan their

actions prior to the occurrence of the phenomenon (Patt 2000).

ENSO forecasts are currently produced using either physically-derived dynam-

ical climate models or empirical (statistical) relationships based on historical data.

For a comprehensive review of ENSO forecasting studies developed during the last

two decades see Mason and Mimmack (2002). As previously discussed in chapter

2 (section 2.2.2), the comparative skill of these two approaches is a subject of much

debate in the literature. Given these two distinct approaches to forecasting, it is

natural to question the feasibility of combining them in order to produce forecasts

more skillful than either forecast considered separately.

As pointed out by Mason and Mimmack (2002), ENSO forecasts are usually

issued in deterministic terms and very little attention has been directed to careful

estimation of forecast uncertainty. This study treats ENSO forecasts in probabilis-

tic terms, with particular attention directed to the estimation of prediction uncer-

tainty. For this particular application, Niño-3.4 index forecasts are summarized by

the mean and the variance of a normal distribution. These two numbers, which

fully describe the entire forecast probability distribution, are used to produce inter-

val forecasts.

The next section of this chapter demonstrates the use of the univariate Bayesian

method for the calibration and combination of empirical and physically-derived

coupled model forecasts. This demonstration uses DEMETER ECMWF 5-month

lead December mean Niño-3.4 index forecasts started from conditions at the end of

the preceding July. Empirical and physically-derived coupled model ensemble fore-

casts available over the n=44-year period (1958-2001) are used. Details concerning

datasets and forecast lead time are given in Appendix C.
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4.3 Empirical forecasts

Figure 4.1 shows the historical (1950-2001) July and December Niño-3.4 index

time series obtained from Reynolds optimum interpolation version 2 SST dataset1

(Reynolds et al., 2002). The two time series are positively correlated (r = 0.87),

illustrating the importance of persistence in predictability of the Niño-3.4 index.

The largest El Niño (1972, 1982 and 1997) and La Niña (1970, 1973, 1988 and

1998) events can clearly be seen.
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Figure 4.1: Observed July (solid line) and December (dashed line) Niño-3.4 time
series (1950-2001) in oC. The horizontal thick solid line is the July climatological
mean of 27.1oC and the horizontal thick dashed line is the December climatological
mean of 26.5 oC for this period

The simplest 5-month lead empirical model for forecasting December mean

Niño-3.4 index uses linear regression with the preceding July mean Niño-3.4 index

historical time series as the linear predictor. Mathematically, yt = β0 + β1ψt + ε′t,

where yt and ψt are the December and July Niño-3.4 monthly mean values, respec-

tively, β0 and β1 are the intercept and slope parameters, respectively, ε′t is a “Normal

(Gaussian)” random variable with zero mean and variance σ2
o [i.e., ε′t ∼ N(0, σ2

o)

], and t is the year being forecast. This model can be written more explicitly in

1http://www.cpc.noaa.gov/data/indices/index.html
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probabilistic notation as

yt |ψt ∼ N(µot, σo
2) (4.1)

with the mean of yt given by

µot = β0 + β1ψt (4.2)

that is, a linear function of the predictor ψt. The Niño-3.4 index is known to be

well approximated by the normal distribution and so the normal regression model

is appropriate (Burgers and Stephenson 1999; Hannachi et al. 2003; Hannachi et

al. 2004).

Figure 4.2 shows a scatter plot of the December versus the preceding July Niño-

3.4 index for the period 1950-2001 (N = 52 observations). The linear regression

fit is indicated on Fig. 4.2 as a solid line. A large amount of the total variance

of December values is explained by the preceding July Niño-3.4 index (R2=0.76).

This emphasises the importance of persistence for forecasting the Niño-3.4 index.

To avoid artificial skill, this empirical model has been evaluated using a cross-

validation “leave one out” method (Wilks 1995, Section 6.3.6). Figure 4.3a shows

empirical forecasts for the target period 1958-2001 (solid line), observed values

(dashed line) and the December climatological mean of 26.5oC (short-dashed line).

The 95% prediction interval (P.I.) for yt “given” ψt is also shown (grey shading).

The 95% prediction interval is defined by

µ̂ot ± 1.96 σ̂ot (4.3)

where µ̂ot = β̂0 + β̂1ψt is the Niño-3.4 index predicted mean for a particular De-

cember and σ̂ot is the prediction standard deviation given by

σ̂ot = σ̂o

(

1 +
1

n
+

(ψt − ψt)
2

nS2
t

) 1

2

(4.4)

where n = N − 1 is the total number of years used in the cross-validation, ψt =
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Figure 4.2: Scatter plot of July versus December Niño-3.4 index (oC). The solid
line is the 1950-2001 linear regression model (β̂0 = -14.14oC, β̂1 = 1.50, R2 = 0.76)

1
n

∑

i6=t

ψi is the long-term climatological mean of the July Niño-3.4 index, S2
t =

1
n

∑

i6=t

[ψi − ψt]
2 and σ̂o =

[

1
n−2

∑

i6=t

(yi − µ̂oi)
2

] 1

2

is the estimated empirical model

standard deviation (see Draper and Smith 1998, Section 3.1).

Eqns. (4.3) and (4.4) show that the smallest prediction interval is obtained

when the predictor equals its mean value ψt = ψt. On the other hand, by moving

away from ψt in either direction the prediction interval increases. The greater dis-

tance a particular July Niño-3.4 index (ψt) is from the climatological mean value

(ψt), the larger is the extrapolation error made when predicting the following De-

cember Niño-3.4 index (yt). However, the use of Eqn. (4.4) compared to σ̂ot = σ̂o

leads to only small changes in practice in the prediction interval, since the S2
t term

in the denominator is proportional to the sum of n terms of the same magnitude as

the term (ψt − ψ̄t)
2. The most precise predictions are obtained for July Niño-3.4

index values in the “middle” of the observed range of ψt, while for more extreme
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Figure 4.3: a) December 1958-2001 Niño-3.4 index empirical forecasts (oC). Ob-
served values (dashed line), forecasts (solid line) and the 95% prediction interval
(grey shading). The short-dashed line is the December 1950-2001 climatological
mean (26.5 oC). b) Standardized forecast error.

values further away from the climatological mean, predictions are less precise.

Figure 4.3a shows that the empirical forecast prediction interval does not vary

much from year to year, indicating stability of estimates such as σ̂o. This simple

model shows surprisingly accurate results, especially for the 1988 and 1998 La

Niña episodes and for the 1997 El Niño episode. Within the 44 years of December

hindcasts the model has only forecast the Niño-3.4 index outside the 95% P.I. in

1982 and 1987. This is in agreement with the expected error rate of 5%. Persistence

works well for the July to December forecasts that occur after the spring barrier



Chapter 4. A zero-dimensional example: Ni ño-3.4 forecasts 50

(Balmaseda et al. 1995; van Oldenborgh et al. 2003). Measures of forecast skill

and uncertainty will be discussed in more detail in section 4.6 of this chapter.

Figure 4.3b shows the time series of the standardized forecast errors

Zt =
µ̂ot − yt

σ̂ot
(4.5)

where µ̂ot is the forecasted mean, yt is the observed value and σ̂ot is the prediction

standard deviation at time t. If this empirical model is appropriate, the standardized

forecast errors should be distributed as independent normally distributed random

variables with zero mean and unit variance. This appears to be the case from Fig.

4.3b. The standardised forecast errors appear to have constant variance and are well

centred on zero with no obvious large outliers. The largest standardized forecast

error occurred in 1987.

This empirical model defined by Eqns. (4.1) and (4.2) provides an informa-

tive and straightforward prior distribution for the univariate Bayesian procedure

described in section 3.3 of chapter 3, and therefore will be used here to estimate the

prior (Eqn. 3.4).

4.4 Coupled model ensemble forecasts

Figure 4.4a shows DEMETER ECMWF coupled model ensemble forecasts for the

period 1958-2001 (same period as in Fig. 4.3 for the empirical forecasts). The fore-

casts have been bias corrected by removing the historical mean forecast bias (error)

from the raw ensemble mean forecasts. The bias-corrected ensemble mean fore-

cast, which has been obtained from the ensemble of m = 9 forecasts, is shown as a

solid line. The 95% P. I., given by the bias-corrected ensemble mean plus or minus

1.96 times the standard deviation of the raw (uncorrected) ensemble forecasts (sx),

is represented by the grey shading. The dashed line shows the observed values of

Niño-3.4 and the short-dashed line is the December climatological mean of 26.5oC.

In general, the interannual variability of the bias-corrected forecasts follows that of
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Figure 4.4: a) December Niño-3.4 index bias-corrected coupled model ensemble
forecasts (oC). Observed values (dashed line), forecasts (solid line) and the 95%
prediction interval, given by the bias-corrected ensemble mean plus or minus 1.96
times the standard deviation of the ensemble forecasts (sx), represented by the grey
shading. The short-dashed line is the December 1950-2001 climatological mean
(26.5 oC). b) Standardized forecast error.
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the observations. However, in several cases the observations lie outside the predic-

tion interval given by the ensemble spread indicating that these forecasts are poorly

calibrated. Section 4.6 of this chapter will discuss quantitative comparisons of the

skill and prediction uncertainty of the uncorrected coupled model, bias-corrected

and empirical forecasts.

Figure 4.4b shows standardized forecast errors for the ECMWF bias-corrected

coupled model ensemble forecast. Standardized forecast errors (Eqn. 4.5) were

obtained by dividing the forecast error by the standard deviation of the 9 coupled

model forecasts (sx) for each year. Even after being bias-corrected these forecasts

still show predominantly positive biases towards warmer Niño-3.4 values in the first

half of the period and predominantly negative biases towards cooler Niño-3.4 values

in the second half. The years 1962 and 1982 produced the largest standardized

forecast errors due to having both large forecast errors and small ensemble standard

deviations. The variance of the standardized forecast errors is found to be 2.23,

which is much greater than the value of one expected for forecasts that have larger

and more realistic estimates of forecast uncertainty (cf. the value of 1.15 obtained

for the empirical forecasts).

The following section estimates the likelihood function (Eqn. 3.5) used to cali-

brate coupled model ensemble forecasts of the Niño-3.4 index against observations.

To demonstrate the method of calibration, instead of bias-corrected forecasts issued

by ECMWF, uncorrected (raw) coupled model outputs will be used.

4.5 Combined and calibrated forecasts

Figure 4.5 shows a scatter plot of raw (uncorrected) coupled model ensemble fore-

casts versus the observed December Niño-3.4 index for the period 1958-2001. En-

semble means are depicted using large open circles. The dashed line is what one

expects for perfect forecasts in which the forecast values are identical to the ob-

served values. The likelihood p(x̄t | yt) is modelled by performing a linear regres-

sion between the ensemble mean forecasts (x̄t) and matching observations (yt) as
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indicated in Eqn. (3.5).
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Figure 4.5: December Niño-3.4 index likelihood model. α̂ = 5.14oC, β̂ = 0.77,
δ̂ = 0.19 [oC]2 and R2 = 0.83. Each black dot is one ensemble member. Big
open circles are ensemble means. The solid line is the regression between raw
(uncorrected) ensemble mean forecasts and observations. The dashed line is what
would be obtained for perfect forecasts.

The solid line in Fig. 4.5 is the best fit linear regression between raw (uncor-

rected) ensemble mean values x̄t and observations yt, corresponding to estimates

for the whole period of α̂ = 5.14oC, β̂ = 0.77, δ̂ = 0.19 [oC]2 and R2 = 0.83. It

can be clearly seen that the uncorrected coupled model ensemble forecast is biased.

These values and Fig. 4.5 indicate that: a) the variance in Niño-3.4 explained by

the coupled model is underestimated [i.e. V ar(x̄t) < V ar(ŷt) since β < 1]; and b)

the coupled model generally underestimates the mean SST in the Niño-3.4 region

[solid line below dashed line in Fig. (4.5)].

To avoid introducing artificial skill, likelihood distribution parameters are es-

timated using cross-validation by leaving out the year being forecast. The mean



Chapter 4. A zero-dimensional example: Ni ño-3.4 forecasts 54

cross-validated likelihood estimated parameters are: α̂ = 5.14 (1.47) [oC]; β̂ = 0.77

(0.06); and δ̂ = 0.20 (0.01) [oC]2, where the values in brackets are the mean of the

standard errors obtained for each of the cross-validated estimates.

The Bayesian procedure described in section 3.3 of chapter 3 allows the cali-

bration of coupled model ensemble forecasts against observations by the likelihood

function (solid line in Fig. 4.5). It also allows the combination of these calibrated

forecasts with the empirical forecasts of Fig. 4.3, which are used to estimate the

prior distribution parameters. Combined/calibrated forecasts are obtained from the

posterior distribution (Eqn. 3.7), which has mean and variance given by Eqns. (3.8)

and (3.9), respectively.

Figure 4.6a shows the mean of the combined forecast (solid line), observa-

tions (dashed line), the 95% P.I. (grey shading) and the December climatological

mean of 26.5oC (short-dashed line). Comparison of this forecast with the empiri-

cal forecast alone (Fig. 4.3a) and bias-corrected coupled model ensemble forecast

alone (Fig. 4.4a) shows that the combined forecasts are in closer agreement with

the observations. The 95% P.I.’s are also reduced compared to those of the empiri-

cal forecasts indicating a reduction in forecast uncertainty due to combination with

coupled model forecasts. Unlike the bias-corrected coupled model forecasts, only

three forecast years (1962, 1984, and 1994) fall outside the 95% P.I., indicating that

the forecasts are better calibrated and more reliable than the bias-corrected coupled

model forecasts.

Figure 4.6b shows the combined forecast standardized errors. The smallest

errors were found within the period 1970-1978. The largest errors were in 1962,

1969, 1979, 1982, 1984 and 1994. Unlike the bias-corrected coupled model forecast

standardized errors (Fig. 4.4b), combined forecast standardized errors (Fig. 4.6b)

are evenly distributed and centred on zero.

Figure 4.7 shows plots of the standardized forecast error versus forecast values

for the three types of forecasts presented so far. Figure 4.7b shows that the bias-

corrected coupled model ensemble standardized forecast error is slightly positively

biased and has large spread for forecast values between 26oC and 28oC than empir-
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Figure 4.6: a) December Niño-3.4 index combined forecasts (oC). Observed values
(dashed line), forecasts (solid line) and the 95% prediction interval (grey shading).
The short-dashed line is the December 1950-2001 climatological mean (26.5 oC).
b) Standardized forecast error.

ical (Fig. 4.7a) and combined (Fig. 4.7c) forecasts. The standardized errors for the

empirical forecast (Fig. 4.7a) and for the combined forecast (Fig. 4.7c) are evenly

spread around the zero line.

4.6 Skill assessment

Table 4.1 gives some deterministic verification scores and a measure of forecast

uncertainty for seven different December Niño-3.4 index predictions for the period
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Figure 4.7: Standardized forecast error versus forecast in oC for (a) the empirical
forecast, (b) the bias-corrected coupled model ensemble forecast and (c) the com-
bined forecast
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1958-2001. All the forecasts were produced using the cross-validation “leave one

out” method. Table 4.1 summarises the skill of these forecasts in the 44-year period.

Forecast Mean Std. dev. MSE MAE Skill Score Uncertainty
µ σ [oC]2 [oC] [%] [oC]

Climatology ȳ sy 1.47 0.98 0 1.20
Empirical µ̂ot σ̂ot 0.37 0.49 74 (+58) 0.59
Raw ensemble x̄t sx 1.23 0.99 16 (0) 0.44
Bias-corrected x̄t − x̄+ ȳ sx 0.26 0.41 82 (+66) 0.44

Uniform Prior x̄t−α
β

√
δ
β2 0.34 0.49 77 (+61) 0.58

Regression a + bx̄t λ
1

2 0.28 0.43 81 (+65) 0.53
Combined µ̂t σ̂t 0.20 0.34 87 (+71) 0.41
Perfect forecast - - 0 0 100 0

Table 4.1: Forecast symbols, verification scores, skill score and mean forecast un-
certainty. MSE and MAE are the mean squared error and mean absolute error of
the mean forecast, respectively. The skill is measured by the MSE skill score (see
text for more details)- values in brackets indicate the percentage improvement com-
pared to the raw ensemble system skill score. Forecast uncertainty is given by the
mean of the prediction standard deviation over the period 1958-2001.

The seven forecasts of Table 4.1 are describe below:

• The climatological forecast is given by the historical Niño-3.4 index December

mean value µt = ȳ of 26.5oC and the historical December standard deviation σt =

sy of 1.20oC.

• The empirical forecast is given by µt = µ̂ot and σt = σ̂ot, as defined in Section

4.2.2 of this chapter.

• The raw coupled model ensemble forecast is given by the mean µt = x̄t and the

standard deviation σt = sx of the uncorrected ensemble forecast.

• The bias-corrected forecast is given by µt = x̄t − x̄ + ȳ and σt = sx, where x̄t

is the raw (uncorrected) ensemble mean forecast at time t, and x̄ and ȳ are the time

means of the raw (uncorrected) ensemble mean forecast and the observed mean

values over the forecast period 1958-2001, respectively. This is a special case of

a Bayesian forecast with uniform prior (defined below) and simplified likelihood

[β = 1 in Eqn. (3.5)]. The simplified likelihood models the bias of the ensemble
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mean as a constant (α = x̄ − ȳ) and the sample variance of the ensemble forecast

as δ = s2
x.

• The combined forecast with uniform prior is given by µt = x̄t−α
β

and σt =
√

δ
β2 .

It is obtained by setting σot
−2 to zero in Eqns. (3.8) and (3.9), that is, all values of

the index are equally likely. This prior characterises a “no-previous-information”

reference case. The combined forecast with uniform prior can be seen as a Bayesian

bias-correction in the raw (uncorrected) ensemble mean and it is useful for compar-

ison with the bias-corrected forecast. Note, however, that the standard deviation
√

δ
β2 is not the same as sx of the bias-corrected forecast.

• The regression forecast is given by µt = a + bx̄t and σt = λ1/2, where a, b and

λ are constant parameters estimated from the linear regression between observed

values y and raw (uncorrected) coupled model ensemble-mean forecasts x̄.

• The combined forecast is given by µt and σt, as defined by Eqns. (3.8) and (3.9).

Mean Squared Error (MSE) and Mean Absolute error (MAE) have been used

as verification scores for the forecast means. The MSE skill score given by SS =

1 − (MSE/MSEc), where MSEc is the climatological MSE, was used to mea-

sure forecast skill. Forecast uncertainty was summarised by the time mean of the

prediction standard deviations over the forecast period 1958-2001.

Forecast Likelihood Prior
a) bias-corrected x̄t | yt ∼ N(α + yt, s

2
x) Uniform (i.e. σot

2 → ∞)
b) uniform prior x̄t | yt ∼ N(α + βyt, δ) Uniform (i.e. σot

2 → ∞)
c) Regression x̄t | yt ∼ N(α + βyt, δ) yt ∼ N(yc, σ

2
c ) (*)

d) combined x̄t | yt ∼ N(α + βyt, δ) yt ∼ N(β0 + β1ψt, σot
2)

Table 4.2: Likelihood and prior distributions for the correction methods applied to
December Niño-3.4 index forecasts. (*) yc and σ2

c are the climatological mean and
the climatological variance of y, respectively, which are obtained with the same
dataset used to estimate the likelihood.

The four correction methods applied to December Niño-3.4 index forecasts

(i.e., bias-corrected forecast, combined forecast with uniform prior, regression and

combined forecast) can all be seen as combined forecasts with particular likelihood
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and prior distributions as indicated in Table 4.2. Each likelihood model provides a

different way of calibrating coupled model forecasts against observations. The in-

corporation of previous knowledge is obtained by the use of the prior distribution.

When the prior is taken to be uniform, no previous knowledge is incorporated in the

correction method. Note that by using the likelihood model x̄t | yt ∼ N(α+βyt, δ)

and the normal prior yt ∼ N(yc, σ
2
c ), where yc and σ2

c are the climatological mean

and the climatological variance of y, respectively, which were obtained with the

same dataset used to estimate the likelihood, one gets a posterior distribution that

is exactly the same as the linear regression between observed values y and coupled

model ensemble-mean forecasts x̄. This posterior distribution is given by the in-

verse regression model yt | x̄t ∼ N(a+ bx̄t, λ) that is here referred to as regression

forecast (forecast c) of Table 4.2). The proof of this equivalence is shown in Ap-

pendix A for standardized variables. Hoadley (1970) provides the general proof for

any continuous variable and section 3.4.3 of chapter 3 gives the general proof of

this equivalence for the multivariate regression of observations on forecasts. The

regression model of Table 4.2 is a particular case of the general multivariate re-

gression model presented in section 3.4 of chapter 3. However, instead of having

multivariate variables for forecasts and observations here both are univariate vari-

ables.

Table 4.1 shows that raw (uncorrected) coupled model and climatological fore-

casts have the largest forecast MSE and MAE and the poorest skill. The empiri-

cal forecasts outperform uncorrected and climatological forecasts. However, bias-

corrected coupled model forecasts outperform the empirical, uncorrected and uni-

form prior forecasts. Bias-corrected and uniform prior forecasts incorporate no

previous information, i.e. both assume infinite variance for the prior distribution

(σot
2 → ∞ as indicated in Table 4.2). This means that the resulting forecast im-

provement is due to the calibration, which is given by the likelihood. The fact that

bias-corrected forecasts outperform uniform prior forecasts suggests that the cali-

bration used to produce bias-corrected forecasts, which does not have the scaling

factor β in the likelihood model, is better than the calibration used to produce uni-
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form prior forecasts. Regression forecasts (forecast c) of Table 4.2), which use the

same likelihood model as uniform prior forecasts but a more informative prior given

by a normal distribution with mean and variance obtained from the same historical

values of y used to build the likelihood, outperform uniform prior forecasts and

have comparable MSE, MAE and MSE skill score to bias-corrected forecasts. This

indicates that the use of a better prior helped to reduce forecast error. Bayesian

combined forecasts, which use the same likelihood model as regression and uni-

form prior forecasts and a more refined prior, outperform all other forecasts. This

indicates that these forecasts are better calibrated due to the use of a better and more

informative prior than those used in the other forecasts. Bayesian combined fore-

casts show an impressive improvement of 71% in skill when compared to the raw

(uncorrected) coupled model forecasts, indicating that the use of a more informative

prior led to additional improvement in forecast skill.

Table 4.1 still shows that combined, raw and bias-corrected coupled model

forecasts give the smallest forecast uncertainty estimates. Both raw (uncorrected)

and bias-corrected mean prediction uncertainties have exactly the same values be-

cause bias-correction does not correct biases in the ensemble variance. Climato-

logical, empirical, uniform prior and regression forecasts give larger uncertainty

estimates than raw (uncorrected) and bias-corrected forecasts. Combined forecasts

give the smallest uncertainty estimates of all forecasts. The width of the 95% P.I. in

Figs. (4.3a), (4.4a) and (4.6a), which is proportional to the mean uncertainty esti-

mate of Table 4.1, shows that combined forecasts (Fig. 4.6a) provide more realistic

and reliable uncertainty estimates compared to the other forecasts, with only a few

observations outside the 95% P.I.

Table 4.3 summarizes the standardized forecast errors. Well-calibrated fore-

casts should have standardized forecast errors with zero mean and unit variance.

The mean standardized forecast error shows that the raw (uncorrected) coupled

model forecast is negatively biased, with the largest mean error of all the fore-

casts. Bias-corrected forecasts are slightly positively biased. The climatological,

empirical, uniform prior, regression and the combined forecast have the smallest
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mean errors (close to zero), indicating that these forecasts are unbiased. The raw

(uncorrected) coupled model ensemble and the bias-corrected ensemble forecasts

have the largest variances of the standardized forecast errors. All other forecasts

have variances slightly larger than one suggesting that the prediction uncertainty of

these forecasts is being marginally underestimated.

Forecast Mean Variance
Climatology -0.01 1.05
Empirical 0.02 1.15
Raw ensemble -2.57 3.11
Bias-corrected 0.11 2.23
Uniform Prior 0 1.06
Regression 0 1.08
Combined 0.01 1.21
Perfect forecast 0 1

Table 4.3: The mean and variance of standardized forecast errors.

All forecasts presented here have been assessed using deterministic verification

scores. Note, however, that the forecast mean µt and the forecast standard deviation

σt of each of these forecasts can be used to produce probabilistic forecasts under

the assumption that the forecasted variable follow a normal (Gaussian) distribution,

i.e., yt ∼ N(µt, σ
2
t ). To demonstrate this utility, let’s consider forecast probabilities

pk for the event Niño-3.4 index yk less than its climatological value of 26.5 oC (i.e.

pk = Pr(yk < 26.5oC), where Pr(E) denotes the probability of the event E). The

corresponding binary observations are stored in the variable ok, i.e., ok = 1 when

the event yk < 26.5oC occurred and ok = 0 when the event yk < 26.5oC has not

occurred. The index k denotes a numbering of the n forecast/observation pairs.

The skill of forecast probabilities pk for the event pk = Pr(yk < 26.5oC) can

be assessed using the Brier score (Brier 1950) given by

BS =
1

n

n∑

k=1

(pk − ok)
2. (4.6)

The Brier score (BS) is analogous to the MSE, but instead of averaging squared
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differences between pairs of mean forecast values µt and observed values yt, it

averages the squared differences between pairs of forecast probabilities pk and the

subsequent binary observations ok. The Brier score can take values in the range

0≤BS≤1. The Brier score is negatively oriented, with perfect forecast exhibiting

BS = 0. Therefore, the smaller the Brier score the better is the quality of the

forecast.

Forecast BS BSS
(%)

Climatology 0.25 0
Empirical 0.13 49
Raw ensemble 0.28 -11
Bias-corrected 0.15 39
Uniform Prior 0.15 42
Regression 0.14 42
Combined 0.12 52
Perfect forecast 0 100

Table 4.4: Brier score (BS) and Brier Skill Score (BSS) in percentage.

Table 4.4 shows the Brier score of all forecasts presented so far for the event

Niño-3.4 index less than its climatological value of 26.5oC (yt < 26.5oC). The

climatological probability forecast (pk = 0.52) is obtained counting the number of

times the observed Niño-3.4 index was less than its climatological value of 26.5oC

and dividing this count by the total number of events (n = 44). Table 4.4 also shows

the Brier skill score (BSS) defined as BSS = (1 − BS/BSc) × 100%, where BSc

is the Brier score of the climatological forecast. By definition the Brier skill score

of the climatological (reference) forecast is 0%, delimiting the no-skill bottom line

from which other forecasts must improve. Therefore, the Brier skill score indicates

how much better a particular forecast is compared to the climatological no-skill ref-

erence forecast. Table 4.4 shows that raw (uncorrected) forecasts have the largest

Brier score of all forecasts, even larger than the Brier score of the reference cli-

matological forecast, leading to a negative BSS. Bias-corrected, uniform prior and

regression forecats are better calibrated than raw (uncorrected) coupled model fore-
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casts, having comparable values of Brier score and BSS. Empirical forecasts have

the second smallest Brier score and consequently the second highest BSS, suggest-

ing that these forecasts are better calibrated than climatological, raw (uncorrected),

bias-corrected, uniform prior and regression forecasts. Finally, combined forecasts

have the smallest Brier score and the highest BSS, indicating that these forecasts

are better calibrated and more skillful than all other forecasts.

4.7 Summary

The univariate Bayesian normal model introduced in chapter 3 (section 3.3) has

been used for calibrating and combining empirical and raw (uncorrected) coupled

model ensemble forecasts of the Niño-3.4 index at a 5-month lead time. The com-

bined forecast has been shown to have greater forecast skill than either of the fore-

casts individually. This indicates that both empirical and raw (uncorrected) coupled

model ensemble forecasts contain mutually useful information. In other words, nei-

ther forecast is sufficient for the other forecast and so increased forecast skill can be

obtained by combining both types of forecast. In order to produce improved inter-

val forecasts of the Niño-3.4 index, empirical and coupled model forecasts should

be combined together. The combined forecast also provides a more reliable predic-

tion error estimate because it is based on a well-founded calibration approach that

incorporates valuable historical information.

Good quality forecasts are expected to have both small prediction errors (good

accuracy) and reliable forecast uncertainty estimates. It has been shown that, al-

though the ECMWF raw (uncorrected) coupled model ensemble forecast is able to

simulate the inter-annual variability of the Niño-3.4 index reasonably well 5 months

in advance, it underestimates the mean SST value in the Niño-3.4 region and pro-

vides unreliable forecast uncertainty estimates. The simple empirical model, on

the other hand, provides more skillful forecasts compared to the raw (uncorrected)

coupled model ensemble forecast. These forecasts are less biased and present larger

and more reliable uncertainty estimates. When the Bayesian approach was used to
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combine these two forecasts together, more skillful forecasts were obtained (both

in deterministic and probabilistic terms) having more accuracy and reliability.



Chapter 5

A one-dimensional example:

Equatorial Pacific SST forecasts

5.1 Aim

The aim of this chapter is to test the use of forecast assimilation (section 3.4) for the

calibration and combination of physically-derived dynamical climate model equa-

torial Pacific SST forecasts produced at a 6-month lead time. Forecast assimilation

is a probabilistic Bayesian approach that converts climate model predictions into

well-calibrated probability forecasts of real-world observable variables. Grid point

forecasts of all seven DEMETER climate models are used in this demonstration.

5.2 Introduction

Forecasting equatorial Pacific SSTs associated to ENSO appropriately is the first

step for successful seasonal predictions. ENSO is characterised by a strong cou-

pling between oceanic and atmosphere physical processes. During warm (El Niño)

episodes, when SSTs are warmer than normal in the equatorial Pacific, trade winds

(near surface winds at the equator) are weaker than normal in the central and west-

ern equatorial Pacific (Bjerknes 1966; Rasmusson and Carpenter 1982; Philander

1983; Philander 1985; McPhaden et al. 1998). Conversely, during cold (La Niña)

65
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episodes, when SSTs are colder than normal in the equatorial Pacific, trade winds

are stronger than normal in the central and western equatorial Pacific.

This relationship between surface winds and SST is an important aspect of

ENSO. Deep atmospheric convection typically occurs over the warmest SSTs in the

tropical Pacific (Graham and Barnett 1987). Warm SSTs (above 30oC) in the equa-

torial region near the date line, in a region of strongly convergent surface winds,

help to activate deep atmospheric convection. Converging winds act to sustain

both deep convection (via moisture convergence) and warm SSTs (via ocean dy-

namics) (Bjerknes 1966; Philander et al. 1984). These processes locally reinforce

one another, and representing them properly in coupled ocean-atmosphere models

is a challenge for ENSO modelling (e.g. Zebiak and Cane 1987; Battisti 1998;

Délécluse et al. 1998).

The zonal redistribution of warm surface layer water masses is an important

oceanic feature of ENSO (Wyrtki 1975; Philander 1990; McPhaden 1995). In

the western equatorial Pacific the thermocline (identified by the depth of the 20oC

isotherm) shallows by 20-50 metres during El Niño, whereas in the eastern equa-

torial Pacific the thermocline deepens by a comparable amount. These thermocline

depth variations are correlated with changes in the strength of equatorial oceanic

currents. As a result of these changes, an anomalous eastward mass transport of

warm water by the equatorial surface currents is observed during the onset of El

Niño events.

Changes in the zonal distribution of the upper ocean heat content are reflected

in sea level variations (Wyrtki 1975; Rebert et al. 1985) because of the vertically

coherent structure of the upper ocean thermal field. In other words, an anoma-

lously deep thermocline tends to be associated with anomalously high sea levels

and vice-versa. Adjustments of the upper ocean heat and mass are strongly in-

fluenced by excitation and propagation of equatorial oceanic waves. These are the

primary mechanisms by which the winds communicate their influence to other parts

of the ocean basin. Westerly wind bursts, usually observed in the western equato-

rial Pacific, can generate easterly propagating oceanic Kelvin waves (Miller et al.
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1988; McPhaden et al. 1988). These waves can depress the thermocline in the

eastern Pacific, reducing upwelling near the west coast of South America. Westerly

wind bursts can also affect surface currents, causing zonal advection of water. This

zonal advection is evident in thermocline variations, as well as in time series of sea

level. Kelvin waves generated by westerly wind bursts can either initiate or termi-

nate an ENSO event in the equatorial Pacific, although triggering of ENSO events

by westerly bursts is still a subject that deserves further investigation (Ineson and

Davey 1997; Vitart et al. 2003).

The importance of simulating coupled ocean-atmosphere interactions in the

equatorial Pacific is clear from the preceding exposition. The next sections of this

chapter present equatorial Pacific SST forecasts produced by the seven DEMETER

climate coupled models listed in Table 5.1. The quality of these forecasts gives an

indication of how well these models can simulate the complex non-linear physical

interactions of the coupled ocean-atmosphere system at the equator. Both the simple

multi-model ensemble forecasts and Bayesian combined and calibrated probabilis-

tic and deterministic forecasts obtained with forecast assimilation are shown and

discussed.

5.3 Coupled model forecasts

The DEMETER project has produced an invaluable multi-model ensemble of global

coupled model seasonal hindcasts. Hindcasts were produced four times a year using

ERA-40 reanalysis initial conditions starting at 00GMT on the first day of Febru-

ary, May, August and November, as described in section 2.2.4 of chapter 2. This

section will focus on the longest lead 6-month ahead predictions of equatorial Pa-

cific SST for the four target months of July, October, January and April. The results

presented here are based on the 63 hindcasts created by the 9-member ensembles

from the seven DEMETER coupled models over the common period 1980-2001.

Predictions are verified against the ERA-40 reanalysis SSTs (see appendix C for

further information).
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Figure 5.1: Hovmuller plots of Pacific SST anomalies (oC) along the equator
(140oE-82.5oW) from July 1980 to July 2001: a) observed anomalies, and 6-
month lead forecasts from b) Météo-France, c) CERFACS, d) LODYC, e) INGV, f)
ECMWF, g) MPI, and h) UKMO.
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Model MIN MAX RMSE BS
(oC) (oC) (oC)

MF -2.5 3.4 0.84 0.20
CERFACS -2.5 3.5 0.82 0.20
LODYC -3.0 3.0 0.82 0.22
INGV -1.7 2.3 0.88 0.22
ECMWF -3.8 3.2 0.89 0.21
MPI -5.2 9.8 1.46 0.29
UKMO -4.1 5.7 0.90 0.22
Ens. mean -3.4 4.4 0.77 0.19
FA 1980-2001 -3.5 4.8 0.75 0.17
FA 1958-2001 -3.4 4.8 0.75 0.17
Obs. 1980-2001 -2.7 4.5 1.13 0.25

Table 5.1: Forecast statistics for the various models based on all the gridded anoma-
lies shown in Fig. 5.1: MIN is the minimum forecast value, MAX is the maximum
forecast value, RMSE is the Root Mean Squared Forecast Error and BS is the Brier
Score. The Brier score is given for probabilistic forecasts of cold events defined by
anomalies less than or equal to zero. The statistics were calculated by pooling over
all the space-time points in the hovmuller plots. The Brier score for the observa-
tions is obtained by forecasting the climatological value of p = 0.5 for each event
at each grid point. The RMSE for the observations is that obtained by forecasting
an anomaly of zero.

Figure 5.1 shows longitude-time hovmuller plots of SST anomalies along the

equator in the Pacific sector from Indonesia to the west coast of South Amer-

ica (sampled four times a year: January, April, July, October). The equatorial

Pacific section contains 56 grid points along the equator running from 140oE to

82.5oW. The observed SST anomalies (Fig. 5.1a) clearly reveal four major posi-

tive anomaly El Niño events (1982/83, 1986/87, 1991/92, 1997/98) separated by

negative anomaly La Niña episodes. The individual coupled model DEMETER

forecasts are shown in panels b)-h) of Fig. 5.1 – anomalies were produced by sub-

tracting the long-term mean for each calendar month for each of the models. All of

the 6-month lead model forecasts capture the main features of the observed ENSO

events in the Pacific SSTs. However, more careful inspection reveals that all the

models except MPI and UKMO tend to underestimate the peak magnitude of the

ENSO events. MPI also has more interannual variation than the observations and
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the other models. Furthermore, most of the model forecasts are rather similar and

appear to overestimate the spatial extent of certain El Niño events, such as 1997/98.

Table 5.1 summarizes the forecasts using statistics calculated by pooling over

all the anomaly data shown in the hovmuller plots of Fig. 5.1. The RMSE and BS

were constructed by averaging over all 56 grid points and 88 time points shown in

the hovmuller plots. With the exception of the MPI model, the model predictions

have similar RMSE scores (0.82-0.90). The MPI predictions have more variance

and lower correlations with the observations and this leads to a much larger RMSE

score. Apart from the MPI and UKMO predictions, the models tend to underes-

timate the maximum values and overestimate the minimum values compared to

observations. The RMSE scores are similar to those obtained for ENSO forecasts

using empirical regression methods (Coelho et al. 2003; Coelho et al. 2004).

5.4 Combined and calibrated forecasts

This section presents and compares combined forecasts obtained with forecast as-

similation (as described in section 3.4.1) with simple multi-model forecasts of equa-

torial Pacific SST anomalies. Figures 5.2a-d show longitude-time hovmuller plots

of equatorial Pacific SST anomalies for observations and three different types of

combined forecast. One of the simplest and most naı̈ve ways to combine multi-

model predictions is to calculate the ensemble mean of all the model predictions

(Doblas-Reyes et al. 2003; Kharin and Zwiers 2002; Krishnamurti et al. 2001).

The comparison of the ensemble mean (Fig. 5.2b) with the observations (Fig. 5.2a)

shows that the ensemble mean captures the main ENSO events. However, more

careful examination reveals that the peak magnitudes of El Niño events in the en-

semble mean forecast are slightly smaller than those in the observations and the

peak magnitudes of the La Niña events are slightly larger. With the exception of

MPI and UKMO, the models generally underestimate the magnitude of the maxi-

mum anomalies whereas only one model (INGV) underestimates the magnitude of

the minimum anomalies when compared to observations (Table 5.1). This leads to
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Figure 5.2: Hovmuller plots of SST anomalies (oC) along the equator (July 1980 to
July 2001): a) observations, b) multi-model ensemble mean 6-month lead forecast,
c) the forecast assimilation forecast with prior estimated over 1980-2001, d) the
forecast assimilation forecast with prior estimated over 1958-2001. The lower four
panels show the binary event defined by when the observed anomaly is less than
or equal to zero (grey shading in panel e), and the corresponding probability fore-
casts for the binary event based on the multi-model ensemble mean and standard
deviation (panel f), forecast assimilation with prior from 1980-2001 (panel g), and
forecast assimilation with the prior from 1958-2001.
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the ensemble mean forecast underestimating the observed interannual variance.

Figure 5.2c shows the combined forecast obtained with forecast assimilation,

where the likelihood and prior were estimated over the common period 1980-2001

(FA 1980-2001). As explained in section 3.4.3, this special case of forecast assim-

ilation is identical to the more traditional MOS multivariate regression of observa-

tions on forecasts. The FA 1980-2001 combined forecast (Fig. 5.2c) qualitatively

resembles the ensemble mean forecast (Fig. 5.2b) although there are some impor-

tant differences in sign in the western Pacific. For comparison, Figure 5.2d shows

the forecast assimilation forecast where the prior has been estimated over the ex-

tended period 1958-2001 (FA 1958-2001). Figure 5.2d closely resembles Fig. 5.2c

implying that prior information about observed SSTs does not make a large dif-

ference to the results in this particular example. There is sufficient information

in the calibration period 1980-2001 to provide a good estimate of the probabil-

ity density of observed SSTs without the need for more prior information about

the observations. However, prior observational information will improve the final

probability forecasts in applications where the prior is more informative relative to

the model predictions. For example, in applications where the model predictions

are less skillfull or where the prior is more skillfull (e.g. an empirical forecast in-

stead of climatology). From Table 5.1 it can be seen that all the combined forecasts

have smaller RMSE than the individual model predictions and that the forecast as-

similation forecasts give slightly smaller RMSE than the ensemble mean forecasts.

Furthermore, the combined forecasts give minimum and maximum values that are

in closer agreement with the observations than those obtained for individual models.

Optimal decision-making requires an estimate of prediction uncertainty in ad-

dition to a forecast of the mean. Prediction uncertainty σ̂ is the before-the-event pre-

diction of the root mean squared error of the forecast. When accurately estimated,

the long-term mean prediction uncertainty should equal the standard deviation of

the forecast errors. The prediction uncertainty for the ensemble mean forecasts is

the standard deviation of the 7 model ensemble mean forecasts. This naı̈ve ap-

proach will be adopted here although it is likely to give an underestimate of the true
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prediction uncertainty due to dependency between different model forecasts. The

prediction uncertainty for the forecast assimilation forecasts takes account of some

of the model dependency by using the square root of the diagonal elements of the

matrix D (Eqn. 3.24). One of the advantages of the forecast assimilation approach

is that it is capable of giving more realistic prediction intervals and hence (as will

be shown) more reliable probability forecasts.

The skill of probabilistic forecasts is tested by forecasting the simple binary

event of observed SST anomalies at each grid point being less than or equal to

zero (Fig. 5.2e). Grey shaded areas illustrate events when SST anomalies were

observed to be less than or equal to zero. White areas illustrate events when SST

anomalies were observed to be above zero. For each type of combined forecast, the

predicted forecast mean and uncertainty have been used to calculate a probability

for the anomaly being less than or equal to zero

p = Pr(Yp ≤ 0) = Φ(
0 − yp

σ̂
) (5.1)

where Yp ∼ N(yp, σ̂
2) and Φ(y∗) is the area under the standard normal curve to the

left of y∗ = −yp/σ̂. Note that the probability forecast depends on both forecast of

the mean yp and the prediction uncertainty σ̂. These probability forecasts are shown

for the combined forecasts in Figs. 5.2f-h. Note that the forecast assimilation but

not the multi-model ensemble mean probabilities forecast correctly the reversed

events visible to the west of the date line at 180o in Fig. 5.2e.

The skill of the probability forecasts has been assessed using the Brier score

(Eqn. 4.6). Brier scores for the three combined forecasts have been calculated by

pooling over all the space-time points in the hovmuller plots and are given in Table

5.1. With the exception of the MPI model, all forecasts have smaller Brier score

than 0.25 and so are more skillful than climatological forecasts that always issue

the probability of 0.5. The relative improvement of the Brier scores compared to

the no-skill Brier score of 0.25 for climatology appears small but this is a common

feature of the Brier score known to occur for even quite skillful forecasting systems.
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The three combined forecasts have smaller Brier score than any of the individual

models and so combining has improved the skill of the probability forecasts. The

forecast assimilation forecasts have the smallest Brier scores and so provide the

most skillful probability forecasts. The use of prior information from 1958-2001

rather than 1980-2001 has little effect on the Brier score of the forecast assimilation

forecasts.

Murphy (1973) has shown that the Brier score can be decomposed in three

components: reliability, resolution and uncertainty (see decomposition in Appendix

D). As described in Appendix E, these components can be interpreted geometrically

using a reliability diagram. Figure 5.3 shows the reliability diagrams for the three

combined forecasts of the event that SST anomalies are less than or equal to zero.

The s-shaped curve of Fig. 5.3a indicates that the multi-model ensemble is overcon-

fident. In other words, it forecasts high probabilities pi when smaller frequencies

ōi are observed, and low probabilities when larger frequencies are observed. The

FA 1980-2001 and FA 1958-2001 forecasts (Figs. 5.3b and 5.3c, respectively) also

show s-shaped curves but are much closer to the diagonal ōi = pi line, indicating

better calibrated forecasts and smaller Brier scores. The area between the dashed

line and the diagonal is smaller in Figs. 5.3b and 5.3c than in Figs. 5.3a, indi-

cating that FA 1980-2001 and FA 1958-2001 forecasts have better reliability than

the multi-model ensemble forecast (see Appendix E for further explanation). These

forecasts also have better resolution than the multi-model ensemble forecast since

the area between the dashed line and the horizontal dotted line is larger for FA 1980-

2001 and FA 1958-2001 forecasts (Figs. 5.3b and 5.3c) than for the multi-model

ensemble forecast (Figs. 5.3a). This improvement in resolution can also be noted

in the histograms plotted in the bottom right corner of each panel of Fig. 5.3, which

shows the forecast probability frequency for the 10 equally spaced probability bins

from 0 to 1 used to construct the reliability diagrams. The higher frequency in the

first and last bins of the histograms of Figs. 5.3b and 5.3c compared to Fig. 5.3a

indicate that FA 1980-2001 and FA 1958-2001 forecasts have better resolution than

the multi-model ensemble forecast.
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Figure 5.3: Reliability diagram for the event ’SST anomalies less than or equal
to zero’ a) for the multi-model ensemble forecast, b) for FA 1980-2001 forecasts,
and c) for FA 1958-2001 forecasts. Probabilities have been ordered and grouped
in 10 equally spaced probability bins from 0 to 1 and are plotted in the centre of
each bin. Perfectly calibrated forecast should have all points falling on the diagonal
solid line. The horizontal dotted line is the climatological observed frequency of the
event. Histogram plots in the bottom right corner of each panel show the forecast
probability frequency for these 10 equally spaced probability bins.
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Figure 5.4: The Brier score and its components as a function of longitude for the
multi-model ensemble (solid line) and forecast assimilation FA 1958-2001 (dashed
line) probability forecasts of SST anomalies less than or equal to zero. Panel: a) the
Brier score, b) the reliability component, and c) the negated resolution component.
The reliability and negated resolution components were estimated at each longitude
using 10 equally spaced probability bins from 0 to 1. The Brier score is the sum of
the reliability, negated resolution, and uncertainty (close to 0.25 at all longitudes)
terms. Smaller values indicate more forecast skill.
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Given the similarities of FA 1980-2001 and FA 1958-2001 the remaining of

this chapter will focus on FA 1958-2001. Figure 5.4 shows the Brier score and its

resolution and reliability components as a function of longitude. Fig. 5.4a shows

that the forecasts are most skillful in the central Pacific, around 170oW, in the region

that has the smallest Brier score of around 0.1. In this region the Brier scores

are smaller than the score of 0.25 obtained from the climatological forecasts that

always forecast the probability of 0.5. The climatological forecast is indicated in

Fig. 5.4a by the horizontal dotted line. To the west of the date line, the forecast

assimilation score (dashed line) is markedly smaller than the multi-model ensemble

mean score (solid line), which is worse here than the score for climatology (dotted

line). The forecast assimilation score is also slightly less than that of the multi-

model ensemble mean forecast eastwards of 120oW. Figure 5.4b shows that the

improvement in the western Pacific is due to an improvement in the reliability of the

forecasts. As can be noted from Figs. 5.2e-h, the multi-model ensemble mean fails

to capture the reversed sign of the events in the western Pacific, whereas the forecast

assimilation forecasts are able to capture this behaviour. A possible cause for the

westward displacement of the forecast anomalies is that four (LODYC, ECMWF,

MPI and UKMO) of the seven models have cold SST biases in the central-western

equatorial Pacific (not shown), suggesting that these models may have excessively

strong easterly winds over this region. Similar behaviour has been noticed by Davey

et al. (2002) in an intercomparison study of 23 coupled models. Figure 5.4c shows

that the resolution of the combined forecasts is similar although there is evidence

of slightly improved resolution in the forecast assimilation forecasts eastwards of

135oW.

As previously mentioned in section 3.4.2, forecast assimilation requires dimen-

sion reduction to deal with the large dimensionality of gridded datasets compared

to the number of independent forecasts and colinearity problems at neighbouring

grid points. In order to show how dimension reduction affects the dependency of

the skill of the combined forecast, Fig. 5.5 shows the root mean squared errors

and Brier scores for cross-validated combined forecasts as a function of the number



Chapter 5. A one-dimensional example: Equatorial Pacific SST forecasts 78

• • • • • • • •

Number of modes

R
M

S
E

2 4 6 8

0.0

0.5

1.0

1.5

1 2 3 4 5 6 7 8

•

•

•
• • • • •

a)

FA 58-01 (MCA) 
FA 58-01 (CCA)

•
• • • • • • •

Number of modes
2 4 6 8

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

•

•
•

•

• • • •

b)

FA 58-01 (MCA) 
FA 58-01 (CCA)

B
rie

r 
sc

or
e

Figure 5.5: Scores of FA 1958-2001 cross-validated forecasts versus the number
retained modes for MCA (solid line) and CCA (dashed line) data reduction. Panel
a) Root Mean Squared Error (oC), b) Brier score. Scores are calculated for each
number of retained modes using all longitude and time values of hovmuller plots
similar to those shown in Figs. 5.2d and 5.2h.
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Figure 5.6: Scatter plots of combined forecasts versus observed sea surface temper-
ature anomalies (oC): a) multi-model ensemble mean forecast, b) forecast assimi-
lation combined forecast with prior estimated using data from 1958-2001
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of retained modes. For less than five modes, MCA outperforms CCA by produc-

ing forecasts with smaller RMSE and Brier scores. The CCA modes are generally

noisier both spatially and temporally than the MCA modes. For more modes, MCA

and CCA lead to similar forecast scores. The smallest RMSE and Brier scores are

obtained using MCA with 3 modes and the scores are not highly sensitive to the

addition of more modes. The three leading MCA modes consist of a basin-wide

pattern, an east-west dipole over the central-east equatorial Pacific basin, and an

east-west basin-wide dipole (not shown). A large fraction of the squared covari-

ance between observations and model predictions (99.7%) is explained by the three

leading MCA modes.

Figure 5.6 shows scatter plots of the combined forecast SST anomalies versus

the observed SST anomalies for a) the ensemble mean forecasts, and b) the 1958-

2001 forecast assimilation combined forecasts. The cloud of forecast assimilation

forecasts lies much closer to the diagonal y = x line than does the cloud of en-

semble mean forecasts. Some positive skewness can also be discerned in the scatter

plots (i.e. more positive than negative anomaly points) caused by the inherent pos-

itive skewness in eastern equatorial Pacific SSTs (Burgers and Stephenson 1999;

Hannachi et al. 2003; Hannachi et al. 2004). A more sophisticated forecast assim-

ilation model could be developed to take account of this deviation from normality

(e.g. by using skewed probability models). The string of outlier points at warm

temperatures is caused by warm ENSO events such as the 1997/98 event extending

across the equatorial Pacific.

5.5 Summary

Forecast assimilation has been tested for the calibration and combination of DEME-

TER multi-model equatorial Pacific SST predictions. The resulting combined fore-

casts reproduce well the temporal and longitudinal variations observed in equato-

rial Pacific sea surface temperatures. In this example, the combined deterministic

forecast obtained with forecast assimilation resembles the multi-model ensemble
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forecast of the mean. The ensemble mean works well in this case because the ma-

jority of the model predictions are for the most part rather similar to one another and

closely resemble the observations. Applications with more disparate model predic-

tions are likely to show enhanced skills for the combined forecasts compared to the

simple approach based on equal-weight averaging the ensemble mean predictions.

Forecast assimilation has been shown to improve the skill of probabilistic fore-

casts. This is because forecast assimilation provides better estimates of prediction

uncertainty than the simple multi-model prediction. The prediction uncertainty es-

timated by forecast assimilation is more realistic than the prediction uncertainty

estimated by the standard deviation of the multi-model ensemble mean predictions.

As a result of this the Brier score of predictions obtained with forecast assimilation

is smaller (i.e. better) than of multi-model ensemble predictions. It is important for

risk assessment purposes that climate forecasts are able to provide good estimates of

forecast uncertainty in addition to providing forecasts of the mean. Forecast assim-

ilation improved reliability of the predictions in the western Pacific and resolution

in the eastern Pacific. The approach is easily applied to 2-dimensional gridded data.

An example of this is given in chapter 6 for South American rainfall forecasts.



Chapter 6

A two-dimensional example: South

American rainfall forecasts

6.1 Aim

The aim of this chapter is to produce improved (i.e. reliable and well-calibrated)

Dec-Jan-Feb (DJF) South American rainfall probability forecasts. Section 6.2 pro-

vides an overview with a brief review of the literature on South American rainfall

seasonal forecasting. Section 6.3 summarizes climatological features and some key

elements of the climate system that influence South American rainfall. Particu-

lar attention is directed to understanding the relationship between SSTs and rain-

fall. This knowledge is used in section 6.4 that introduces an empirical model that

uses Aug-Sep-Oct (ASO) Pacific and Atlantic SSTs as predictors for DJF South

American rainfall. Section 6.5 tests the use of forecast assimilation for the cali-

bration and combination of DJF South American forecasts. Forecast assimilation

is performed using 1-month lead grid point forecasts of three DEMETER climate

models (ECMWF, CNRM and UKMO) covering the period 1959-2001. Section

6.6 assesses the skill of empirical and combined and calibrated rainfall forecasts.

The skill of combined and calibrated forecasts obtained with forecast assimilation

is compared to the skill of both the simple multi-model forecast, produced by pool-

ing/averaging together the forecasts of the three DEMETER climate models, and

82
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the empirical model that uses ASO SSTs as predictors. Section 6.7 presents an ex-

ample of application of forecast assimilation for river flow forecasting. And finally,

section 6.8 summarizes the main findings of the chapter.

6.2 Introduction

As in any other part of the world, South American rainfall seasonal forecasting is

experimental. This is because our present knowledge about the climate system and

its complex interactions is still far from comprehensive. This lack of knowledge

is translated into climate models via simplifications/parameterisations of processes

that are not yet fully understood. Although boundary conditions can provide some

predictability of the atmosphere on seasonal time scales, the inherent variability of

the atmosphere causes seasonal climate forecasts to be probabilistic.

South American rainfall seasonal forecasts are generally produced using two

approaches: physically-derived dynamical modelling and empirically based (sta-

tistical) modelling. Several studies have used atmospheric GCMs forced with ob-

served SSTs to simulate seasonal rainfall over South America (e.g. Folland et al.

2001; Cavalcanti et al. 2002; Marengo et al. 2003; Moura and Hastenrath 2004).

These studies have demonstrated that atmospheric GCMs forced with observed

SSTs have some predictive skill when forecasting rainfall in the tropical region of

South America and over the south region of Brazil, Uruguay, Paraguay and north-

east Argentina with all the other areas of South America presenting poor predictive

skill. They all found that forecast skill is highly conditioned on the manifestation

of ENSO events, with neutral years having less predictive skill. Both tropical South

America and the south region of Brazil, Uruguay, Paraguay and northeast Argentina

have strong ENSO signals (see Fig. 2.1).

Studies by Pezzi et al. (2000), Folland et al. (2001), Greischar and Hastenrath

(2000) and Martis et al. (2002) have developed empirical models relating observed

rainfall with SSTs over the Atlantic and Pacific oceans as well as the meridional

surface wind component over the tropical Atlantic to predict seasonal rainfall over
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the south and northeast regions of Brazil and the Netherland’s Antilles. Empirical

models have been primarily developed for these regions because of the higher pre-

dictability of these regions compared to the other areas of South America. Empiri-

cally based rainfall predictions for the northeast region of Brazil are skillful during

the period Mar-Apr-May (MAM), which is the rainy season for most parts of this

region (Greischar and Hastenrath 2000; Folland et al. 2001; Moura and Hastenrath

2004). The empirical predictions of Pezzi et al. (2000) for the south of Brazil are

generally less skillful than the predictions for the northeast region of Brazil, and El

Niño years were found to be more predictable than neutral and La Niña years.

The comparative skill of physically-derived dynamical and empirically based

seasonal forecasts of South American rainfall is not entirely known, and further

systematic comparisons are desirable (Moura and Hastenrath 2004). Only a few

comparison studies (Folland et al. 2001; van Oldenborgh et al. 2003; and Moura

and Hastenrath 2004), focussing on rainfall forecasts for South America, have been

carried out. The study by van Oldenborgh et al. (2003) concluded that physically-

derived dynamical predictions outperform empirical predictions over tropical South

America, northeast Brazil and Uruguay. Folland et al. (2001) and Moura and Has-

tenrath (2004), which focussed on rainfall forecasts for the northeast Brazil, both

concluded that physically-derived dynamical predictions do not outperform empiri-

cally based predictions. Their conclusions are in accordance with other comparative

skill assessment studies for other target regions outside South America (e.g. Barn-

ston et al. 1999a; Anderson et al. 1999). This chapter (section 6.6) will contribute

to this skill assessment exercise. It will compare the skill of an empirical model

that uses observed Pacific and Atlantic SST anomalies of ASO to predict rainfall

anomalies of the following DJF, with the skill of DEMETER coupled multi-model

rainfall anomaly predictions for DJF produced with initial conditions of the 1st of

November. The empirical model developed in this study differs from those of pre-

vious studies (Greischar and Hastenrath 2000; Pezzi et al. 2000; Folland et al.

2001; Moura and Hastenrath 2004) in the sense that it predicts rainfall anomalies

for the entire South American continent, while the other studies focussed only on
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sub-regions.

Combining the predictions from these two approaches might yield better es-

timates of future climate. Section 6.6 of this chapter will examine this issue by

combining physically-derived coupled model and empirically based predictions of

DJF South American rainfall anomalies. The skill of the combined forecast can

then be compared with the skill of each individual forecasting approach.

Good quality seasonal forecasts are fundamental for local governments to plan

their actions in order to minimize human and economical losses that may be caused

by anomalous climate events such as ENSO. In South America these forecasts are

useful for civil defence, agricultural, fishery and water resources (reservoir manage-

ment) planning. Brazil, the largest and most populated country of South America,

produces more than 90% of its electricity with hydropower stations (http://www.ons.

org.br), emphasising the need for good quality seasonal rainfall forecasts. The pro-

vision of improved seasonal rainfall forecasts will certainly help the Brazilian gov-

ernment to better plan its management actions in order to have a more efficient

control of its national electricity production program.

Despite the recognised importance of good quality seasonal forecasts, no study

has been published on statistical calibration of South America physically-derived

climate model seasonal forecasts using past observations in order to improve the

quality of the forecasts. Most studies (e.g. Cavalcanti et al. 2002; Marengo et al.

2003; Moura and Hastenrath 2004) investigated the ability of atmospheric GCMs

forced with observed SSTs in simulating atmospheric climatological features such

as the annual and seasonal cycles of rainfall for some regions of South America.

These studies have identified systematic forecast errors, which have not been cor-

rected to improve the forecasts. These errors arise from a combination of factors

such as the chaotic evolution of the atmosphere, errors in the initial conditions of

the model, and errors in model formulation/parameterisation. In order to produce

well-calibrated and more reliable estimates of rainfall for South America this chap-

ter uses the probabilistic Bayesian forecast assimilation procedure – introduced in

Chapter 3 (section 3.4) – for the calibration/combination of the ensemble outputs of
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DJF rainfall anomaly predictions produced by three DEMETER coupled models.

The resulting calibrated/combined forecasts are summarized by the mean and the

variance of a normal distribution at each grid point. In fact the resulting forecast is

characterised by the mean and covariance of all grid points.

6.3 Climatology

6.3.1 Seasonal rainfall

South American seasonal rainfall is modulated by a few elements of the climate

system. Among these elements are: a) the Intertropical Convergence Zone (ITCZ),

a zonally oriented band of atmospheric convective activity that is observed in the

tropics; b) the South Atlantic Convergence Zone (SACZ), a northwest-southeast

oriented band of atmospheric convective activity that is observed over South Amer-

ica during DJF (Kodama 1992); c) Mesoscale Convective Systems (MCS), which

are observed during DJF and MAM over subtropical South America (Velasco and

Fritsch 1987); d) frontal systems originated in high and mid-latitudes of the Pa-

cific ocean, which advect heat and humidity from the Pacific ocean to continental

South America; and e) easterly trade winds resulting from the equatorial branches

of the North and South Atlantic subtropical highs, which advect moisture from the

Atlantic ocean to the continent.

Figure 6.1 shows the climatological mean rainfall for the four seasons of the

year (Dec-Jan-Feb (DJF), Mar-Apr-May (MAM), Jun-Jul-Aug (JJA) and Sep-Oct-

Nov (SON)). Fig. 6.1a shows a northwest-southeast oriented band of rainfall, with

maximum over central South America, reflecting a rainfall pattern associated with

the SACZ. Fig. 6.1b shows a zonally oriented band of rainfall in tropical South

America, illustrating the rainfall pattern associated with the ITCZ. Fig. 6.1c shows

that JJA is the dry season for most of the South America continent. Fig. 6.1d illus-

trates the pattern of rainfall primarily produced by South Pacific frontal systems.

Figure 6.2 shows the standard deviation of seasonal rainfall that is an indicator
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a) DJF b) MAM c) JJA d) SON

Figure 6.1: Seasonal mean rainfall (1948-2000) in mm.day−1 from PREC/L V1.0
dataset (see Appendix C). a) DJF; b) MAM; c) JJA; and d) SON.

of rainfall variability. More variability is observed during DJF (Fig. 6.2a) and

MAM (Fig. 6.2b) than in JJA (Fig. 6.2c) and SON (Fig. 6.2d). This is because

DJF and MAM rainfall is strongly modulated by convective systems while JJA and

SON rainfall is primarily produced by frontal systems. The dry season (JJA) has

the smallest variability (Fig. 6.2c). Note that in DJF and MAM the southeast region

of South America (formed by the south of Brazil, Uruguay, Paraguay and northeast

Argentina) has a second maximum of rainfall variability, which is related to the

frequent manifestation of MCS over this region during these periods.

Figure 6.3 shows the percentage of the annual rainfall observed during the four

seasons of the year. More than 50% of the annual rainfall is observed during DJF

(Fig. 6.3a), indicating that this is the rainy season for most of South America.

Between 20 and 40% of the annual rainfall is observed during SON for most of

South America (Fig. 6.3d). MAM is the season when most of South America

observes between 10 and 20% of its annual rainfall (Fig. 6.3b). JJA is the dry

season when most of South America (except Chile and Venezuela) experiences less

than 10% of the annual rainfall (Fig. 6.3c).

From the exposition so far, DJF is the season when most of South America

receives most of its rainfall. Therefore, good quality predictions of DJF seasonal
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a) DJF b) MAM c) JJA d) SON

Figure 6.2: Interannual standard deviation of seasonal mean rainfall (1948-2000) in
mm.day−1 from PREC/L V1.0 dataset. a) DJF; b) MAM; c) JJA; and d) SON.

rainfall are crucial for all social and economical sectors that depend on seasonal

rainfall for future planning and decision making. Hence, the next sections of this

chapter will focus on analyses and predictions of DJF seasonal rainfall.

a) DJF b) MAM c) JJA d) SON

Figure 6.3: Percentage of the total annual rainfall (1948-2000) from PREC/L V1.0
dataset. a) DJF; b) MAM; c) JJA; and d) SON.
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6.3.2 The relationship between SSTs and rainfall

South America is bordered by the Pacific and Atlantic oceans. Surface conditions of

these two oceans are potential sources of predictability for South American climate

(Moura and Shukla 1981; Mechoso et al. 1990; Marengo 1992; Nobre and Shukla

1996; Diaz et al. 1998; Uvo et al. 1998; Barros and Silvestri 2002; Coelho et al.

2002; Peagle and Mo 2002 among others). These studies identified regions of South

America that are sensitive to SST anomalies in the Pacific and Atlantic oceans. This

section uses MCA (section 3.4.2) to examine the relationship between Aug-Sep-Oct

(ASO) Pacific and Atlantic SST anomalies (140oE-10oE; 15oN-60oS) and South

American rainfall of the following DJF during 1959-2001. The study of lagged

relationships like the one that is investigated here is useful for empirical predictions

(e.g. the previous season ASO SST anomalies can be used as predictors for DJF

rainfall anomalies). The previous season ASO is used here for consistency with

the initial conditions of the 1st of November that are used by the three DEMETER

coupled models to predict DJF rainfall.

Figure 6.4 shows the loadings (spatial patterns) and the expansion coefficients

(time series) of the first mode of the MCA analysis between the observed ASO SST

anomalies over the Pacific and Atlantic oceans and the observed DJF South Amer-

ican rainfall anomalies using data for the period 1959-2001. This mode explains a

large amount (63.9%) of the squared covariance between ASO SST and DJF rain-

fall. The SST pattern (Fig. 6.4a) shows basin-wide positive loadings in the equa-

torial Pacific, revealing that this mode is related to ENSO. Warm (El Niño) years

are depicted by positive peaks in the time series of Fig. 6.4c and cold (La Niña)

years are marked by minima in these time series. The rainfall pattern (Fig. 6.4b)

has negative loadings over northern South America and south Chile and positive

loadings over the east and south Brazil, Uruguay, Paraguay, northern Argentina and

Ecuador. This figure reveals a dipole pattern that during El Niño years is marked by

deficit of rainfall in northern South America and excess of rainfall in the east and

south Brazil, Uruguay, Paraguay and northern Argentina. During La Niña years
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Figure 6.4: First MCA mode between ASO SST anomalies and DJF South Amer-
ica rainfall anomalies for the period 1959-2001. The squared covariance fraction
(SCF), which indicates the percentage of the total squared covariance between ASO
SST anomalies and DJF South America rainfall anomalies explained by this mode,
is 63.9%. a) SST loadings. b) Rainfall loadings. c) Expansion coefficients (time se-
ries) of SST (dashed line) and rainfall (solid line). The correlation r between these
two time series is indicated in panel c.
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this pattern is reversed. A similar ENSO pattern to Fig. 6.4 has been identified by

Ropelewski and Halpert (1987; 1989), Kiladis and Diaz (1989) and Peagle and Mo

(2002).

Figure 6.5 shows composites of DJF equatorial Pacific SST anomalies and DJF

South American rainfall anomalies for La Niña, neutral and El Niño events between

1959 and 2001 as defined by the Climate Prediction Center (http://www.cpc.noaa.

gov/). These events are listed in Table 6.1. In total there are 13 La Niña, 14 neutral

and 16 El Niño events.

Years
La Niña 1964/65, 1970/71, 1971/72, 1973/74, 1974/75, 1975/76,

1983/84, 1984/85, 1988/89, 1995/96, 1998/99, 1999/00,
2000/01

Neutral 1959/60, 1960/61, 1961/62, 1962/63, 1966/67, 1967/68,
1978/79, 1980/81, 1981/82, 1985/86, 1989/90, 1993/94,

1996/97, 2001/02
El Niño 1963/64, 1965/66, 1968/69, 1969/70, 1972/73, 1976/77,

1977/78, 1979/80, 1982/83, 1986/87, 1987/88, 1990/91,
1991/92, 1992/93, 1994/95, 1997/98

Table 6.1: La Niña, neutral and El Niño years occurred during 1959-2001.

SST anomalies in the equatorial Pacific range between -0.5oC and -1.5oC for

the La Niña composite (Fig. 6.5a), between -0.5oC and 0.5oC for the neutral

composite (Fig. 6.5b) and between 0.5oC and 1.5oC for the El Niño composite

(Fig. 6.5c). The dipole pattern of rainfall of Fig. 6.4b is reproduced by the El

Niño composite of rainfall anomalies (Fig. 6.5f). Negative anomalies are observed

in northern South America and positive anomalies in the east and south Brazil,

Uruguay, Paraguay and northern Argentina. The La Niña composite (Fig. 6.5d)

shows a pattern with positive rainfall anomalies in northern South America and

negative anomalies in the east Brazil. The second centre of anomalies in south

Brazil, Uruguay, Paraguay and northern Argentina is not observed in the compos-

ite of La Niña years. This is in accordance with the findings of Barros and Sil-

vestri (2002) that suggest that during La Niña years this region is sensitive to SST
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a) La Nina SST b) Neutral SST c) El Nino SST

d) La Nina precipitation e) Neutral precipitation f) El Nino precipitation

Figure 6.5: Composites of equatorial Pacific SST anomalies (oC) and South Amer-
ican rainfall anomalies (mm.day−1) for La Niña (panels a and d), neutral (panels b
and e) and El Niño years (panels c and f) between 1959-2001. See Table 6.1 for the
years used in each composite.

anomalies of the subtropical southwest Atlantic instead of equatorial Pacific SST

anomalies. The link between rainfall in south Brazil, Uruguay, Paraguay and north-

ern Argentina and SSTs in the subtropical Southwest Atlantic will be discussed in

more detail later. The neutral years rainfall anomalies composite (Fig 6.5e) shows

positive anomalies in northeast South America and negative anomalies in northwest

South America and northeast Argentina.

The lack of rainfall in northern South America during El Niño years is a di-

rect response to changes in the Walker circulation (Coelho et al. 2002; Peagle
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and Mo 2002). The increased convective activity observed over the anomalously

warm equatorial waters near the west coast of South America during El Niño years

has a direct response over the north of South America, where compensatory subsi-

dence prevails and inhibits rainfall. The increased rainfall in south Brazil, Uruguay,

Paraguay and northern Argentina is a teleconnection response to the anomalous

convective activity observed in central equatorial Pacific during El Niño years. This

teleconnection pattern receives the name Pacific South American (PSA) due to its

analogy with the Pacific North American (PNA) teleconnection pattern (Wallace

and Gutzler 1981; Karoly 1989). The PSA and the PNA teleconnection patterns

are illustrated in Figs. 6.6a and 6.6b, respectively. The PSA consists of a high

level wave train of alternated anti-cyclone and cyclone centres emanating from the

anomalous convective heat source in the equatorial central Pacific, which curves to-

wards subtropical South America. The wave train starts over the Pacific ocean with

two anti-cyclonic circulations at low latitudes of both hemispheres centred east of

the date line. It extends to the southeast down to the west of the Antarctic Peninsula,

where it turns to the northeast towards the east South America. At subtropical lati-

tudes, this implies an enhanced subtropical jet over most of the Pacific ocean. This

wave train was documented by Karoly (1989) and attributed to barotropic Rossby

wave propagation. At low levels in the Atlantic sector, there is an increased pressure

gradient between the Chaco low (a cyclonic centre observed in subtropical South

America) and the South Atlantic semipermanent subtropical high. This increased

gradient results in a westward displacement and strengthening of the easterly flow

from the northern branch of the Atlantic subtropical high. This contributes to an in-

creased moisture supply over eastern Brazil and increased rainfall over this region.

This easterly low-level flow is deflected southwards by the Andes and advects addi-

tional moisture from the Amazon rainforest to subtropical latitudes, contributing to

the rainfall maximum over northern Argentina, Uruguay, Paraguay and south Brazil

(Grimm et al. 2000).

Figure 6.7 shows the second MCA mode that explains 10.3% of the squared

covariance between ASO SST and DJF rainfall. The SST pattern (Fig. 6.7a) shows
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Figure 6.6: Schematic illustration of the upper troposphere circulation anomaly
pattern over the Pacific ocean during a) the early stage of an El Niño event (JJA)
and b) the mature stage of an El Niño event (DJF). The stippling shows the region of
enhanced convection over the central equatorial Pacific and the arrows indicate the
westerly wind anomalies in the jet streams. The letters H and L indicate anomalous
centres of high and low pressure, respectively. Source: Karoly (1989).

three structures that are worth discussing: costal ENSO, equatorial Atlantic dipole

and SSTs off the coast of south Brazil, Uruguay and Argentina. The first structure

of Fig. 6.7a is found in the equatorial Pacific, with negative loadings near the west

coast of South America resembling a costal ENSO signature (Fig. 6.7a). SST

anomalies in this region produce rainfall anomalies with the same signs as those in

neighbouring northwest South America, as illustrated in Fig 6.7b.

The second structure of Fig. 6.7a is the dipole in the equatorial Atlantic with

positive loadings in the equatorial South Atlantic and negative loadings in the equa-

torial North Atlantic. This dipole has previously been reported by Moura and

Shukla (1981), Nobre and Shukla (1996) and Uvo et al. (1998). The interhemi-

spheric gradient of SST in the equatorial Atlantic modulates the meridional position

of the ITCZ. Enhanced deep convection occurs over oceanic regions with positive

SST anomalies. Warm SSTs in the equatorial South Atlantic and increased evapo-

ration over the ocean, combined with the increased moisture flux over the northeast
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Figure 6.7: Second MCA mode between ASO SST anomalies and DJF South Amer-
ica rainfall anomalies for the period 1959-2001. The squared covariance fraction
(SCF) is 10.3%. a) SST loadings. b) Rainfall loadings. c) Expansion coefficients
(time series) of SST (dashed line) and rainfall (solid line). The correlation r be-
tween these two time series is indicated in panel c.
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region of Brazil – produced by the equatorial southeasterly trade winds – result in

increased rainfall over northeast Brazil. In contrast, when SSTs are warm in the

equatorial North Atlantic and cold in the equatorial South Atlantic, evaporation is

increased over the North Atlantic ocean resulting in enhanced convective activity

in the ITCZ. Ascending vertical motion is observed in the North Atlantic over the

region of warm SSTs and descending motion (subsidence) is observed in the north-

east region of Brazil and the neighbouring oceanic areas. This link between SSTs

in the equatorial Atlantic and rainfall in northeast Brazil is illustrated in Fig. 6.7a

and 6.7b. Loadings in Northeast Brazil and in the equatorial South Atlantic have

the same signs, but opposite signs to loadings in equatorial North Atlantic. This is

in agreement with the physical explanations given above. A similar pattern to Fig.

6.7b has been identified by Peagle and Mo (2002) as the response to the equatorial

Atlantic dipole.

The third structure of Fig. 6.7a is found in the subtropical southwest Atlantic,

with negative loadings near the coast of southern Brazil, Uruguay and Argentina

(Fig. 6.7a). SST anomalies in this region produce rainfall anomalies with the

same signs as those in neighbouring south Brazil, Uruguay, Paraguay and north-

east Argentina as illustrated in Fig 6.7b. Frontal systems that reach the subtropical

southwest Atlantic are intensified when SSTs over this region are above normal,

leading to above normal rainfall over south Brazil, Uruguay, Paraguay and north-

east Argentina. This link has previously been documented by Diaz et al. (1998)

and Barros and Silvestri (2002).

Figure 6.8 shows the third MCA mode that explains only 5.5% of the squared

covariance between ASO SST and DJF rainfall. The SST pattern (Fig. 6.8a) shows

negative loadings in a large area of the Atlantic. The pattern is linked to the pat-

tern of negative loadings in the northeast Brazil (Fig. 6.8b). This indicates that

positive rainfall anomalies are observed in the northeast Brazil when the equato-

rial Atlantic is dominated by positive SST anomalies, Conversely, negative rainfall

anomalies are observed in the northeast Brazil when the equatorial Atlantic is dom-

inated by negative SST anomalies. South Brazil, Uruguay, Paraguay and northern



Chapter 6. A two-dimensional example: South American rainfall forecasts 97

-40 -25 -10  -5  -2  -1   1   2   5  10  25  40

a) SST: Mode 3    SCF: 5.5%

SSCP

b) Precipitation: Mode 3

1960 1965 1970 1975 1980 1985 1990 1995 2000
-20

-15

-10

-5

0

5

10

15

20

year

T
hi

rd
 M

C
A

 m
od

e

c) Time series       r= 0.62

SST (ASO)
Prec (DJF)

Figure 6.8: Third MCA mode between ASO SST anomalies and DJF South Amer-
ica rainfall anomalies for the period 1959-2001. The squared covariance fraction
(SCF) is 5.5%. a) SST loadings. b) Rainfall loadings. c) Expansion coefficients
(time series) of SST (dashed line) and rainfall (solid line). The correlation r be-
tween these two time series is indicated in panel c.
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Argentina also have negative loadings (Fig. 6.8b). Barros and Silvestri (2002)

showed that rainfall variability in this region is not only modulated by ENSO as

illustrated by Fig. 6.4. They found that the SSTs in the subtropical south-central

Pacific (SSCP), which is marked in Fig. 6.8b, also influence rainfall in south Brazil,

Uruguay, Paraguay and northern Argentina. Their findings suggest that the ENSO

PSA pattern is not the result of equatorial forcing alone, but is actually caused by

the forcing of both the equatorial and the subtropical SST forcing. They found a

negative correlation between rainfall in south Brazil, Uruguay, Paraguay and north-

ern Argentina and SST in the SSCP, which is also evident from Figs 6.8a and 6.8b

(although not very intense). Positive loadings are found in the SSCP and nega-

tive loadings in south Brazil, Uruguay, Paraguay and northern Argentina. Barros

and Silvestri (2002) still suggested that the SST in the SSCP has considerable low-

frequency variability. Visual inspection of Fig. 6.8c also suggests that the third

MCA mode has low-frequency variability. Additionally, expansion coefficients of

Fig. 6.8c reveal a downward trend in SST. The subtropical Southwest Atlantic, near

the coast of south Brazil and Uruguay also appears with the same sign of rainfall

loadings in the south Brazil, Uruguay and northern Argentina (Figs 6.8a and 6.8b),

as previously noted in Fig. 6.7.

6.4 Empirical predictions

6.4.1 The empirical model

The existence of relationships between ASO Pacific and Atlantic SST anomalies

and South American rainfall anomalies in the following DJF as those found in the

previous sections suggests that ASO SST observations could be used as predictors

of DJF rainfall. The simplest model for forecasting DJF South American rainfall

anomalies uses multivariate linear regression with the preceding Pacific and At-

lantic ASO SST anomaly time series at each grid point v as the linear predictors

for rainfall at each grid point q over South America. One assumes that the observ-
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able rainfall anomalies y given the observable SST anomalies z are (multivariate)

normally distributed:

y = M(z − z0) + εT (6.1)

where εT is a (multivariate) normally distributed error with zero mean and empirical

prediction error covariance T . For generality, a bias term z0 has also been included.

The (q × v) empirical prediction operator M can be estimated by regression of

observed SST anomalies on the observed rainfall anomalies. The equation can be

rewritten more succinctly as the following probability model:

y|z ∼ N(M(z − z0), T ). (6.2)
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Figure 6.9: Map of skewness of mean DJF rainfall anomalies (1959-2001).

The normality assumption is generally acceptable for seasonal rainfall anoma-

lies. Figure 6.9 shows a moment measure of skewness b1 = 1
n

n∑

i=1

(
yi−ȳ
sy

)3

of the

series of n = 43 years (1959-2001) of mean DJF rainfall anomalies. The skewness
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b1 measures the asymmetry of the distribution. Values above zero indicate that the

distribution is positively skewed. Values below zero indicate that the distribution is

negatively skewed. Values close to zero indicate that the distribution is symmetric

(close to normal). Fig. 6.9 shows that most South America has values between

-0.5 and +0.5, indicating that DJF seasonal rainfall anomalies are close to follow-

ing a normal distribution. The normality assumption substantially simplifies both

modelling and parameter estimation.

6.4.2 Parameters estimation

For this multivariate normal model one needs estimates of the vector z0 and matrices

T andM . These parameters are obtained by performing a multivariate regression of

observed SST anomalies on the observed rainfall anomalies for a period when both

SST and rainfall anomaly observations are available. The common period for the

example shown in this chapter is 1959-2001 (43 years). The slope M , bias vector

z0, and the empirical prediction error covariance T can be obtained using ordinary

least squares estimation:

M = SyzS
−1
zz (6.3)

z0 = −(y − zMT )M(MTM)−1 (6.4)

T = Syy − SyzS
−1
zz S

T
yz (6.5)

where Szz is the (v × v) covariance matrix of the observed SST anomalies, Syy

is the (q × q) covariance matrix of the observed rainfall anomalies, and Syz is the

(q × v) cross-covariance matrix.

Reliable parameter estimation is difficult because of the large dimensionality

of gridded data sets (e.g. v=2761 grid points of SST anomalies over the Pacific and

Atlantic and q=312 grid points of rainfall anomalies over South America) and the

strong dependency between values at neighbouring grid points. As previously dis-

cussed in chapter 3 (section 3.4.2) poor conditioning of matrices such as Szz makes

parameter estimation problematic (or impossible). This problem can be avoided
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using multivariate dimension reduction techniques to reduce the dimensionality of

the data sets. Instead of considering grid point variables, one can project the data

onto a small set of spatial patterns to obtain a small number of indices. In this

chapter Maximum Covariance Analysis (MCA) has been used to extract leading

co-varying modes from the observed ASO Pacific and Atlantic SST anomalies and

the observed South American rainfall of the following DJF. MCA with up to 8 re-

tained modes has been tested. It was found that MCA with 6 modes gave the best

cross-validated forecast results, which are shown in this chapter. Figure 6.10 shows

the squared covariance fraction (SCF) as a function of the number of modes for the

MCA between observed ASO SST anomalies in the Pacific and Atlantic and ob-

served rainfall over South America using data for the period 1959-2001. Note that

the SCF substantially drops up until 6 modes. These first 6 modes explain 89.3% of

the squared covariance between SST and rainfall anomalies. After 6 modes a very

small amount of the squared covariance is explained by each MCA mode. The first

3 modes have been shown and discussed in section 6.3.2 of this chapter (Figs. 6.4,

6.7 and 6.8) and explain a total of 79.7% of the squared covariance between SST

and rainfall anomalies.

The empirical prediction that is presented later in section 6.6 is performed as

follows:

1. In order to produce cross-validated forecasts on data not used in the estima-

tion, the year to be forecast is removed from the data set.

2. The time mean is subtracted from the remaining observations to make anoma-

lies stored in a (n× q) data matrix Y of observed DJF rainfall and a (n× v)

data matrix Z of observed ASO Atlantic and Pacific SSTs, where n is the

length of the data time series. In the example of this chapter n = 42, q = 312

and v = 2761.

3. An SVD analysis is performed of the matrix Y TZ = UΣ∗V T to determine

the leading MCA modes.
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Figure 6.10: SCF as a function of the number of modes for the MCA between ob-
served ASO SST anomalies and observed DJF rainfall anomalies over South Amer-
ica (1959-2001). The first 6 modes explain 89.3% of the covariance between SST
and rainfall anomalies

4. A multivariate regression of the k-leading MCA DJF rainfall anomaly modes

on the k-leading MCA ASO SST anomaly modes is performed in order to

estimate M , z0, and T .

5. The estimated quantities M , z0, and T are then used to forecast DJF rainfall

anomalies for the removed year using the observed ASO SST anomalies from

that year.

6.5 Forecast assimilation of coupled model predictions

The Bayesian forecast assimilation procedure introduced in chapter 3 (section 3.4)

has been used for the calibration and combination of DJF South American rain-

fall anomaly forecasts produced by three DEMETER coupled models (ECMWF,

CNRM and UKMO). This procedure uses forecasts for DJF covering the period
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1959-2001 that were produced using initial conditions of the 1st November (1-

month lead) and is referred here to as forecast assimilation (FA). A particular use-

fulness of the forecast assimilation procedure is that it allows predicted patterns to

be shifted around in order to correct coupled model predictions. The prior distri-

bution was estimated using observations over the calibration period 1959-2001. As

it will be shown later in section 6.6.1, forecast assimilation has also been used to

combine forecasts produced by DEMETER coupled models with empirical fore-

casts produced by the model described in the previous section. In one of the two

combination procedures empirical predictions have been used to estimate the prior

distribution. The first three leading modes of the MCA between observed and cou-

pled model predictions of DJF South American rainfall anomalies were used in the

forecast assimilation procedure. Forecast assimilation was tested with up to 8 re-

tained modes. It was found that forecast assimilation with 3 modes gave the best

cross-validated forecast results. These three modes explain 86.5% of the squared

covariance between observed and forecast rainfall. Figure 6.11 shows the SCF as

a function of the number of modes for the MCA between observed and coupled

model predictions of DJF South American rainfall anomalies. Note that the SCF

substantially drops up until 3 modes. After 3 modes a very small amount of the

squared covariance is explained by each MCA mode. The first three modes are

shown in Figs. 6.12, 6.13 and 6.14 and discussed below.

Figure 6.12 shows the loadings (spatial patterns) and the expansion coefficients

(time series) of the first mode of the MCA between observed and coupled model

predictions of DJF South American rainfall anomalies. This mode explains 65%

of the squared covariance between observed and predicted rainfall. The pattern of

observed rainfall (Fig. 6.12a) shows a similar pattern to the rainfall pattern of the

first MCA mode of Fig. 6.4b, which is related to ENSO. The correlation between

the expansion coefficients (time series) of observed rainfall of the first MCA mode

(solid line in Fig. 6.12e) and the expansion coefficients (time series) of observed

rainfall of the first MCA mode of Fig. 6.4c (solid line) is 0.97. This correlation

is statistically significant at the 1% level. Figures 6.12b, 6.12c and 6.12d show the
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Figure 6.11: SCF as a function of the number of modes for the MCA between
observed and coupled model predictions of DJF South American rainfall anomalies
(1959-2001). The first 3 modes explain 86.5% of the covariance between observed
and predicted DJF rainfall anomalies

spatial patterns of the predictions produced by the three coupled models here in-

vestigated (CNRM, ECMWF and UKMO). The spatial structure of these patterns

(Figs 6.12b, 6.12c and 6.12d) when compared to the observed pattern (Fig. 6.12a)

provides an indication of the ability of these models to reproduce the observed

rainfall. The magnitude of the loadings of Figs 6.12b, 6.12c and 6.12d gives an

indication of the weights attributed to each model in the forecast assimilation com-

bination procedure. The three models are able to reproduce the rainfall pattern over

the central region of northern South America. The pattern of negative loadings in

the northwest South America, near Ecuador, is partially captured by the ECMWF

and UKMO models, while CNRM fails to reproduce this feature. Over east Brazil

CNRM and UKMO partially capture the signal of positive loadings observed in this

region but ECMWF does not reproduce this feature. Both ECMWF and UKMO are

able to capture the sign of positive loadings in the south Brazil, Uruguay, Paraguay
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Figure 6.12: First MCA mode between observed and predicted DJF South America
rainfall anomalies for the period 1959-2001. The SCF is 65.0%. Spatial patterns
(loadings): a) Observation. b) CNRM. c) ECMWF. d) UKMO. e) Expansion coef-
ficients (time series) of observed rainfall (solid line) and predicted rainfall of these
three coupled models (dashed line). The correlation r between these two time series
is indicated in panel e.
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and northern Argentina. This feature is not reproduced by CNRM.

Figure 6.13 shows the second MCA mode that explains 17.7% of the squared

covariance between observed and predicted rainfall. The pattern of observed rain-

fall (Fig. 6.13a) shows a similar pattern to the rainfall pattern of the third MCA

of Fig. 6.8b. This rainfall pattern is related to the SST patterns of the equatorial

Atlantic, the southwestern subtropical Atlantic and the SSCP region in the Pacific

(Fig. 6.8a). The correlation between the expansion coefficients (time series) of

observed rainfall of the second MCA mode (solid line in Fig. 6.13e) and the ex-

pansion coefficients (time series) of observed rainfall of the third MCA mode of

Fig. 6.8c (solid line) is 0.85 and is statistically significant at the 1% level. The

three models are able to reproduce the rainfall pattern over northeast Brazil. They

all have negative loadings over this region (Figs. 6.13b, 6.13c and 6.13d) in ac-

cordance with the observed pattern (Fig. 6.13a). The negative loadings observed

in central South America (in the Amazonian region) and in south Brazil, Uruguay,

Paraguay and northern Argentina (Fig. 6.13a) are not reproduced by any model.

Only ECMWF (Fig. 6.13c) has some negative loadings in northern Argentina. The

positive loadings observed in the southeast region of Brazil (Fig. 6.13a) are well

reproduced by all models. The three models show positive loadings over this re-

gion (Figs. 6.13b, 6.13c and 6.13d). The positive loadings observed in northwest

South America (Fig. 6.13a) are well reproduced by UKMO (Fig. 6.13d), while

both CNRM and ECMWF do not capture this feature appropriately (Figs. 6.13b

and 6.13c).

Figure 6.14 shows the third MCA mode that explains 3.8% of the squared co-

variance between observed and predicted rainfall. The observed rainfall pattern

(Fig. 6.14a) is not similar to any pattern described in section 6.3.2. The time series

of Fig 6.14e suggest that this mode has a very low frequency (decadal) variability.

The three models (Figs 6.14b, 6.14c and 6.14d) have difficulty in reproducing the

observed pattern (Fig 6.14a). CNRM (Fig 6.14b) nearly completely fails to repro-

duce the observed pattern (Fig 6.14a). ECMWF is able to capture the observed

pattern of positive loadings in the south of Brazil and central-west South America
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Figure 6.13: Second MCA mode between observed and predicted DJF South Amer-
ica rainfall anomalies for the period 1959-2001. The SCF is 17.7%. Spatial patterns
(loadings): a) Observation. b) CNRM. c) ECMWF. d) UKMO. e) Expansion coef-
ficients (time series) of observed rainfall (solid line) and predicted rainfall of these
three coupled models (dashed line). The correlation r between these two time series
is indicated in panel e.
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Figure 6.14: Third MCA mode between observed and predicted DJF South Amer-
ica rainfall anomalies for the period 1959-2001. The SCF is 3.8%. Spatial patterns
(loadings): a) Observation. b) CNRM. c) ECMWF. d) UKMO. e) Expansion coef-
ficients (time series) of observed rainfall (solid line) and predicted rainfall of these
three coupled models (dashed line). The correlation r between these two time series
is indicated in panel e.



Chapter 6. A two-dimensional example: South American rainfall forecasts 109

and also negative loadings in the east coast of Brazil (Fig 6.14c). UKMO repro-

duces the observed pattern of positive loadings in northern Argentina.

6.6 Rainfall forecasts

6.6.1 Skill assessment

The Bayesian forecast assimilation procedure of chapter 3 (section 3.4) has also

been used for the combination of forecasts produced by the three DEMETER cou-

pled models with empirical forecasts produced by the model described in section

6.4. Two additional combined and calibrated forecasts have been produced. One

uses empirical forecasts to estimate the prior distribution in the forecast assimila-

tion procedure and is referred here to as Forecast Assimilation with Empirical Prior

(FAEP). The other uses the empirical forecasts as an additional model in the fore-

cast assimilation procedure. This means that the empirical forecasts are used as the

fourth model in the forecast assimilation. In other words, the matrix X used in FA

contains not only forecasts of the three DEMETER coupled models, but also con-

tains the empirical model forecasts. These combined and calibrated forecasts are

referred here to as Forecast Assimilation of Coupled model and Empirical forecasts

(FACE).

This section assesses the skill of DJF rainfall forecasts produced by empirical,

multi-model and the three different Bayesian combined and calibrated predictions

(FA, FAEP and FACE). Deterministic and probabilistic skill measures are exam-

ined and discussed. The skill of combined and calibrated forecasts is compared to

the skill of both the simple multi-model forecast, produced by pooling/averaging

together the forecasts of the three DEMETER climate models, and the empirical

model that uses ASO SSTs as predictors. The comparison of performance of dif-

ferent climate prediction methods requires temporal consistency in both predictor

and predictand and a long common reference period. These two requirements are

satisfied in this assessment exercise. Both empirical and coupled models produced
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predictions for the common period (1959-2001). Consistently, the empirical model

uses ASO SST to predict rainfall for the following DJF and coupled models use

initial conditions of the 1st of November to predict rainfall for DJF.

a) Empirical b) Multi-model c) FA d) FAEP e) FACE

f) Empirical g) Multi-model h) FA i) FAEP j) FACE

Figure 6.15: Correlation and Brier skill score maps of DJF rainfall anomaly pre-
dictions for the period 1959-2001. The Brier skill score is for the event ’rainfall
anomalies less than or equal to zero’.

Figure 6.15 shows correlation maps (Figs. 6.15a-e) and Brier Skill Score maps

(Figs. 6.15f-j) of rainfall anomaly predictions for empirical, multi-model, FA,

FAEP and FACE forecasts for the period 1959-2001. Correlation maps show the

correlation between observed and predicted anomalies at each grid point. The BSS

is for the event ’rainfall anomaly less than or equal to zero’. The BSS represents

the level of improvement of the Brier score (Brier 1950) compared to that of a ref-

erence forecast (in this case, the climatological probability of the event). The BSS

is designed to range from one for perfect predictions, through zero for predictions

that provide no improvement over the reference forecast, to negative values for pre-
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dictions that are worse than the reference forecast. The tropical region, in northern

South America, is the most skilful region with correlations between 0.6 and 0.8 and

BSS between 0.1 and 0.6. The subtropics (south Brazil, Uruguay, Paraguay and

northern Argentina) also show some skill. Correlations between 0.2 and 0.5 are

found in this region. These two regions are well known to be influenced by ENSO.

This suggests that most of the skill of South American rainfall predictions is ENSO

derived. This is in accordance with Figs. 6.4 and 6.12, which show that most

of the variability of South American DJF rainfall is related to ENSO. Empirical,

multi-model, FA, FAEP and FACE predictions have similar correlation maps (Figs.

6.15a-e), indicating that all these approaches have comparable level of deterministic

skill. The probabilistic measure of skill (Figs. 6.15f and 6.15g) shows that empirical

predictions are more skilful than multi-model predictions, particularly in the trop-

ical region where empirical predictions have higher BSS. Bayesian combined and

calibrated predictions obtained with forecast assimilation (Figs. 6.15h and 6.15j)

have higher BSS than uncalibrated multi-model predictions (Fig. 6.15g). This in-

dicates that the calibration provided by forecast assimilation improves the skill of

the multi-model predictions. Combined and calibrated predictions obtained with

forecast assimilation have now comparable level of probabilistic skill as empirical

predictions. This increase in BSS is mainly due to improvements in the reliability of

the predictions (Fig. 6.16a-e), with the tropical regions also showing improvements

in resolution (Fig. 6.16f-j). The predominance of negative BSS in Figs. 6.15f-j is

due to some properties of this score. Mason (2004) has shown that the expected

value of the BSS is less than zero if nonclimatological forecast probabilities are is-

sued. As a result, negative skill scores can often hide useful information content in

the forecasts. Therefore, negative skill scores need to be interpreted with caution.

Figure 6.17 shows the mean anomaly correlation coefficient (ACC) for La

Niña, neutral and El Niño years occurred during 1959-2001 (Table 6.1) and all

(1959-2001) years. The ACC of each year is given by the correlation between the

observed and predicted spatial anomaly pattern (Jolliffe and Stephenson 2003, their

section 6.3.1). La Niña and El Niño years have higher mean ACC than neutral
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a) Empirical b) Multi-model c) FA d) FAEP e) FACE

f) Empirical g) Multi-model h) FA i) FAEP j) FACE

Figure 6.16: Reliability component of the BSS given by −Rel/BSc (panels a-e)
and resolution component of the BSS given by Res/BSc (panels f-j) for empiri-
cal, multi-model, FA, FAEP and FACE, where Rel and Res are the reliability and
resolution components of the Brier Score (see Appendix D), respectively, and BSc
is the Brier score of the climatological forecast. Large values of both −Rel/BSc
and Res/BSc contribute for increase in the BSS and therefore indicate improved
forecast skill.

years, indicating that predictions for ENSO years are more skillful than predictions

for neutral years. El Niño and La Niña predictions obtained with forecast assimi-

lation (FA, FAEP and FACE) show an increase in the mean ACC compared to the

uncalibrated multi-model. Neutral years have nearly null mean ACC, indicating

that rainfall anomalies of these years are hardly predicted. The higher predictability

of ENSO years compared to neutral years supports the idea that most of the skill

of DJF South American rainfall forecasts is ENSO derived. The mean ACC for

all years show that empirical and combined and calibrated forecasts obtained with

forecast assimilation have similar levels of skill.
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Figure 6.17: DJF mean anomaly correlation coefficient (ACC) for empirical, multi-
model, FA, FAEP and FACE forecasts of La Niña, neutral and El Niño years (listed
in section 6.3.2 of this chapter) used to produce the composites of Fig. 6.5. The
vertical solid lines on the top of the white bars indicate the 95% confidence interval
for the mean ACC of empirical forecasts, which were obtained using a bootstrap
resampling procedure

The vertical solid lines on the top of the white bars of Fig. 6.17 indicate the

95% confidence interval for the mean ACC of empirical predictions. These intervals

were obtained using a bootstrap resampling procedure as described in section 5.3.2

of Wilks (1995). Empirical predictions have the highest mean ACC among all the

predictions for La Niña years. FA and FACE predictions have the second and third

highest mean ACC for La Niña years, respectively, but they are within the range of

values of the 95% confidence interval of the mean ACC of empirical predictions.

This indicates that the mean ACC of these three forecasts cannot be considered

different from each other from the statistical point of view at the 5% significance

level. This suggests that empirical, FA and FACE have similar level of skill when

forecasting rainfall of La Niña years. Multi-model and FAEP have smaller mean

ACC than empirical, FA and FACE predictions.
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The 95% confidence interval of the mean ACC of empirical predictions for

neutral years in Fig 6.17 indicates that empirical, multi-model, FA and FACE pre-

dictions have similar levels of skill. FAEP has the largest mean ACC indicating

that the calibration and combination obtained with FAEP can improve forecast skill

when forecasting neutral years. For El Niño years the mean ACC of empirical

predictions cannot be considered different from the mean ACC of FA and FACE

forecasts at the 5% significance level. This indicates that empirical, FA and FACE

predictions have similar levels of skill. As for La Niña years, multi-model and

FAEP have smaller mean ACC than empirical, FA and FACE predictions.

6.6.2 ENSO Composites

This section examines the ability of empirical, multi-model, FA, FAEP and FACE

predictions in reproducing observed El Niño and La Niña composite patterns dur-

ing 1959-2001. Figure 6.18 shows observed and predicted DJF South American

rainfall anomaly composites for those La Niña and El Niño years listed in Table

6.1. Figures 6.18b and 6.18h show that the empirical model that uses the previ-

ous season ASO Pacific and Atlantic SST anomalies as predictor for DJF South

American rainfall reproduces remarkably well both El Niño and La Niña observed

composite patterns (Figs. 6.18a and 6.18g). The correlation between the empirical

forecast and the observed pattern is 0.95 for the La Niña composite and 0.97 for the

El Niño composite. Figures 6.18c and 6.18i show that the multi-model composed

by three DEMETER coupled models (ECMWF, CNRM and UKMO) partially re-

produces the observed pattern in equatorial South America and fails to reproduce

the observed pattern in the other regions of the continent. The correlation between

the multi-model forecast composite and the observed composite is 0.28 for La Niña

and 0.51 for El Niño.

Figures 6.18d and 6.18j show that the use of the Bayesian forecast assimilation

(FA) procedure for the calibration and combination of the predictions produced by

the three coupled models resulted in forecast composites in much better agreement
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a) Obs (La Nina) b) Empirical (La Nina)

0.95

c) Multi-model (La Nina)

0.28

d) FA (La Nina)

0.82

e) FAEP (La Nina)

0.53

f) FACE (La Nina)

0.84

g) Obs (El Nino) h) Empirical (El Nino)

0.97

i) Multi-model (El Nino)

0.51

i) FA (El Nino)

0.97

k) FAEP (El Nino)

0.95

l) FACE (El Nino)

0.98

Figure 6.18: DJF South American rainfall anomaly composites (mm.day−1) for
those La Niña and El Niño years listed in Table 6.1. a) La Niña composite of
observed rainfall anomalies . Panels b-f) Empirical, multi-model, FA, FAEP and
FACE La Niña forecast composites. g) El Niño composite of observed rainfall
anomalies. Panels h-l) Empirical, multi-model, FA, FAEP and FACE El Niño fore-
cast composites. The number in the bottom right hand corner of panels b-f) and h-l)
is the correlation between the observed (panels a and g) and the forecast composite.

with the observations (Figs. 6.18a and 6.18g). The correlation between FA com-

posites and observed composites is 0.82 for La Niña and 0.97 for El Niño, being

now comparable to the correlation values of empirical forecast composites. These

results show that more realistic patterns can be obtained with the calibration and

combination of coupled model forecasts using the multimodel Bayesian forecast

assimilation approach. The La Niña composite of Fig. 6.18e shows that the use of

empirical model predictions to estimate the prior distribution in the forecast assim-

ilation procedure (FAEP) improves over the multi-model (Fig. 6.18c) but does not

outperform FA (Fig. 6.18d). The correlation between the FAEP La Niña composite

and the observed composite is 0.53 compared to 0.82 for FA. Figure 6.18k shows

that for El Niño FAEP provides a similar composite to FA (Fig. 6.18j), and a cor-
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relation with the observed pattern of 0.95 compared to 0.97 for FA. Figures 6.18f

and 6.18l show that the use of empirical model forecasts as an additional model

in the forecast assimilation procedure (FACE) produced similar composites as FA

(Figs. 6.18d and 6.18j). The correlation between FACE composites and observed

composites is 0.84 for La Niña and 0.98 for El Niño, being these values slightly

larger than those of FA composites (Figs. 6.18d and 6.18j)

These results and those presented in the previous section of this chapter (sec-

tion 6.6.1) indicate that empirical and forecast assimilated combined and calibrated

forecasts have similar level of skill for 1-month lead DJF South American rain-

fall predictions. However, one might argue that at longer leads coupled models

may outperform empirical predictions. In order to examine this issue, an empirical

model that uses the previous season MJJ (May-Jun-Jul) Pacific and Atlantic SST

anomalies as predictors for NDJ South American rainfall has been developed and

its forecasts have been compared to DEMETER coupled model predictions pro-

duced by ECMWF, CNRM and UKMO for NDJ with initial conditions of the 1st

of August (3-month lead). Results shown in Appendix F confirm that empirical and

coupled model predictions of South America rainfall have comparable level of skill,

even at this extended lead time. It should be noted, however, that the difference be-

tween empirical and combined and calibrated predictions is larger for 3-month lead

(Figs. F.2) than for 1-month lead (Figs. 6.17) predictions and that La Niña years

are less predictable at the extended 3-month lead time.

6.6.3 Rainfall indices

The Bayesian forecast assimilation framework can be used to produce probability

forecasts at specific locations/regions (down-scaling). This section demonstrates

its utility for forecasting the mean rainfall anomaly at specific regions of South

America. The resulting forecast is specified by the mean and the variance of a

normal distribution. These two estimates are used to construct interval forecasts.

The skill of the forecasts is assessed both deterministically and probabilistically.
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Northwest
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Figure 6.19: Rainfall index boxes

The correlation and Brier skill score maps of Fig. 6.15 reveal three poten-

tially predictable areas over South America. These three regions are in the north-

west (5oN-13oN; 65oW-80oW), north (5oS-10oN; 50oW-65oW) and south (22.5oS-

32.5oS; 50oW-62.5oW) of South America, as illustrated by the boxes in Fig. 6.19.

The observed DJF rainfall of all grid points inside each box of Fig. 6.19 was av-

eraged to produce an index for each region. The index was computed for all the

years of the period 1959-2001 in order to produce a n = 43 year long time series.

This index was used to compose the n× q matrix Y needed for both empirical pre-

dictions and forecast assimilation as described in section 6.4.2 and section 3.4.2,

respectively. Note that here Y is a one column matrix (i.e. q=1). All results shown

here were obtained in cross-validation mode.

Figure 6.20 shows empirical, multi-model, FA and FAEP 1959-2001 DJF rain-

fall anomaly predictions for the north box illustrated in Fig. 6.19. Predictions are

given by the mean forecast anomaly value (solid line) and the 95% prediction in-
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Figure 6.20: Empirical, multi-model, FA and FAEP 1959-2001 DJF rainfall
anomaly predictions for the north box illustrated in Fig. 6.16. Mean predicted
anomaly (solid line), observed anomaly (dashed line) and the 95% prediction inter-
val (grey shading)
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Forecast MSE Correlation Uncertainty BS
[mm2] [mm]

Climatology 0.84 - 0.93 0.25
Empirical 0.34 0.77 0.47 0.14
Multi-model 0.36 0.79 0.61 0.17
FA 0.30 0.80 0.48 0.15
FAEP 0.29 0.81 0.36 0.13
FACE 0.29 0.81 0.48 0.14

Table 6.2: Skill and uncertainty measures of DJF rainfall anomaly predictions for
the north box. MSE in mm2, correlation, mean predicted uncertainty in mm, Brier
score for the event ’rainfall anomaly less than or equal to zero’. Values refer to the
forecast period 1959-2001.

terval (grey shading). This interval is defined by the mean forecast anomaly value

plus or minus 1.96 times the prediction standard deviation. Empirical predictions

(Fig. 6.20a) use Pacific and Atlantic ASO SSTs as predictors for DJF rainfall, as

described in section 6.4.2. Multi-model predictions (Fig. 6.20b) are obtained from

the 27 member ensemble produced by ECMWF, CNRM and UKMO. FA predic-

tions (Fig. 6.20c) are produced with the Bayesian forecast assimilation procedure of

section 3.4.2 (chapter 3). FAEP predictions (Fig. 6.20d) use empirical predictions

(Fig. 6.20a) as estimates of the prior distribution in the forecast assimilation pro-

cedure. The four predictions of Fig. 6.20 reproduce remarkably well the observed

anomalies (dashed line) during the period 1959-2001.

Table 6.2 shows skill and uncertainty measures for the four prediction methods

of Fig. 6.20 that are used to forecast DJF rainfall anomalies in the north box, in

addition to climatological and FACE predictions. Climatological predictions have

the highest MSE and Brier score of all methods, indicating that they provide the

least skillful prediction for the north box. Climatological predictions also pro-

vide the largest mean forecast uncertainty of all prediction methods. Empirical

and multi-model predictions have comparable MSE and correlation but empirical

predictions have less uncertainty than multi-model predictions. Empirical predic-

tions have a smaller Brier score than multi-model predictions. This indicates that
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Forecast MSE Correlation Uncertainty BS
[mm2] [mm]

Climatology 0.32 - 0.58 0.24
Empirical 0.25 0.52 0.40 0.20
Multi-model 0.21 0.61 0.47 0.20
FA 0.19 0.64 0.40 0.19
FAEP 0.25 0.58 0.32 0.21
FACE 0.19 0.64 0.40 0.19

Table 6.3: Skill and uncertainty measures of DJF rainfall anomaly predictions for
the northwest box. MSE in mm2, correlation, mean predicted uncertainty in mm,
Brier score for the event ’rainfall anomaly less than or equal to zero’. Values refer
to the forecast period 1959-2001.

empirical predictions have better estimates of forecast uncertainty than multi-model

predictions. FA, FAEP and FACE predictions have comparable MSE, correlation

and Brier score. FAEP has a smaller mean forecast uncertainty estimate than FA

and FACE, as noted in Fig. 6.20 by the smaller 95% prediction interval of FAEP

compared to FA. This results in a slightly smaller Brier score for FAEP when com-

pared to the Brier score of FA and FACE. FA, FACE and FAEP have slightly smaller

MSE and slightly higher correlations than empirical and multi-model predictions.

This indicates that Bayesian forecast assimilated predictions provide slightly better

estimates of the mean rainfall anomaly than empirical and multi-model predictions.

In probabilistic terms, the Brier score reveals that Bayesian forecast assimilated pre-

dictions have comparable level of skill to empirical predictions and slightly better

skill than multi-model predictions.

Figure 6.21 shows 1959-2001 DJF rainfall anomaly predictions for the north-

west box illustrated in Fig. 6.19. The four prediction methods are able to reproduce

most of the interannual variability of the observed anomalies. Table 6.3 shows

that climatological predictions have the highest MSE and Brier score of all meth-

ods, indicating that they provide the least skillful prediction for the northwest box.

Climatological predictions also provide the largest mean forecast uncertain of all

prediction methods. Multi-model predictions have smaller MSE and higher corre-
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Figure 6.21: Empirical, multi-model, FA and FAEP 1959-2001 DJF rainfall
anomaly predictions for the northwest box illustrated in Fig. 6.16. Mean predicted
anomaly (solid line), observed anomaly (dashed line) and the 95% prediction inter-
val (grey shading)
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lation than empirical predictions, indicating that multi-model predictions provide

better estimates of the mean rainfall anomaly than empirical predictions. Empiri-

cal predictions have less uncertainty than multi-model predictions and coincidently

these two prediction methods have the same Brier score. FA and FACE have the

same MSE, correlation, mean prediction uncertainty and Brier score. The MSE of

FA is slightly smaller than the MSE of multi-model predictions and the correla-

tion of FA is slightly larger than the correlation of multi-model predictions. This

indicates that the calibration produced by forecast assimilation improves the esti-

mate of the mean rainfall anomaly. FA predictions have less uncertainty than the

multi-model and a slightly smaller Brier score than the multi-model, indicating that

forecast uncertainty is slightly better estimated by FA. As for the north box, FAEP

has the smallest predicted uncertainty as illustrated by the smaller 95% prediction

interval in Fig. 6.21d compared to Figs. 6.21a, 6.21b and 6.21c. Note, however,

that a large number of observations lie outside the 95% prediction interval, what

makes FAEP the least reliable forecast among all here investigated.

Forecast MSE Correlation Uncertainty BS
[mm2] [mm]

Climatology 0.56 - 0.75 0.25
Empirical 0.56 0.28 0.60 0.27
Multimodel 0.47 0.43 0.46 0.24
FA 0.47 0.42 0.62 0.21
FAEP 0.58 0.38 0.52 0.27
FACE 0.47 0.42 0.62 0.21

Table 6.4: Skill and uncertainty measures of DJF rainfall anomaly predictions for
the south box. MSE in mm2, correlation, mean predicted uncertainty in mm, Brier
score for the event ’rainfall anomaly less than or equal to zero’. Values refer to the
forecast period 1959-2001.

Figure 6.22 shows 1959-2001 DJF rainfall anomaly predictions for the South

box of Fig. 6.19. The four prediction methods have difficulties in reproducing the

observed anomalies. Table 6.4 shows that FAEP predictions have the highest MSE

and Brier score of all methods, indicating that they provide the least skillful predic-
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Figure 6.22: Empirical, multi-model, FA and FAEP 1959-2001 DJF rainfall
anomaly predictions for the south box illustrated in Fig. 6.16. Mean predicted
anomaly (solid line), observed anomaly (dashed line) and the 95% prediction inter-
val (grey shading)
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tion for the south box. Climatological predictions provide the largest mean forecast

uncertainty of all prediction methods. Multi-model predictions have smaller MSE

and higher correlation than empirical predictions, indicating that multi-model pre-

dictions provide better estimates of the mean rainfall anomaly than empirical pre-

dictions. Empirical predictions have more uncertainty than multi-model predictions

and a higher Brier score than multi-model predictions, indicating that multi-model

predictions are more skillful than empirical predictions. FA and FACE have the

same MSE, correlation, mean prediction uncertainty and Brier score. FA and multi-

model predictions have the same MSE and FA has a slightly smaller correlation

than multi-model predictions. Note, however, that FA has a larger mean predic-

tion uncertainty than the multi-model, resulting in a smaller Brier score than the

multi-model. This indicates that the calibration produced by forecast assimilation

improved probabilistic forecast skill.

The comparison of the magnitude of the MSE, Brier score and correlation of

Tables 6.2, 6.3 and 6.4 reveals that the north and northwest boxes are more pre-

dictable than the south box. Note, however, that the south box shows the high-

est difference between empirical and FA (or multi-model), indicating that coupled

models provide useful forecast information for this region.

6.7 River flow forecasts

This section shows an example of application of forecast assimilation for river flow

forecasting at Tucuruı́ (3.75oS, 49.68oW) in the north of Brazil. Tucuruı́ is the sec-

ond largest hydropower station in Brazil, capable of producing peak power of 4240

MW. Forecast assimilation has been performed using the observed 1959-2001 DJF

Tocantins river flow at Tucuruı́ to compose the one column matrix Y as described

in section 3.4.2. The matrix X was composed by 1-month lead DJF rainfall predic-

tions produced by ECMWF, CNRM and UKMO coupled models.

Figure 6.23 shows cross-validated DJF river flow predictions for Tucuruı́ ob-

tained with forecast assimilation (solid line). Forecast assimilation reproduces well
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Figure 6.23: FA 1959-2001 DJF flow anomaly predictions for Tucuruı́. Mean pre-
dicted anomaly (solid line), observed anomaly (dashed line) and the 95% prediction
interval (grey shading)

the inter-decadal variability of the observed anomalies (dashed line). The corre-

lation between observed and predicted anomalies is 0.35. Most observations are

within the 95% prediction interval (grey shading), indicating that forecast assimila-

tion provides reliable interval forecasts of river flow anomalies for Tucuruı́.

6.8 Summary

This study addressed seasonal predictability of South American rainfall. The skill

of empirical, DEMETER coupled multi-model and combined and calibrated pre-

dictions obtained with forecast assimilation has been assessed and compared. This

comparison revealed that when seasonally forecasting Dec-Jan-Feb South Amer-

ican rainfall at 1-month lead-time the current generation of coupled models have

comparable level of skill to those obtained using a simplified empirical approach.

The same conclusion still holds for longer (e.g. 3-month) lead times. This result is

in agreement with findings of previous comparison studies (e.g. Folland et al. 2001;
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Moura and Hastenrath 2004). This implies that both empirical and coupled model

predictions are sufficient for each other. In other words, in the example presented

here, empirical predictions do not provide additional skill to coupled model predic-

tions and vice-versa. The tropics and the area of south Brazil, Uruguay, Paraguay

and northern Argentina have been found to be the two most predictable regions of

South America. South American rainfall is generally only predictable in ENSO

years rather than in neutral years, which exhibit very little skill.

Bayesian forecast assimilation has been shown to be a powerful tool for the

calibration of multi-model predictions. The resulting forecasts have been shown to

have improved Brier scores compared to the simple multi-model prediction. This

is because forecast assimilation provides reliable estimates of forecast uncertainty.

Forecast assimilation predictions also helped to produce probability forecasts with

skill in southeastern South America – an important region for South American hy-

droelectricity production. Additionally, forecast assimilation rainfall composites

for El Niño and La Niña years have been shown to be in much better agreement

with observed composites than multi-model composites. Finally, forecast assimila-

tion has been shown to be useful for local down-scaling of rainfall and river flow

anomalies.



Chapter 7

Conclusion

7.1 Summary of thesis results

This thesis has reviewed the literature of forecast calibration and combination in

atmospheric sciences and economics. Additionally, it has also introduced a new

framework for the calibration and combination of forecasts. This framework has

been proposed for the production of calibrated probability forecasts of observable

variables from multi-model ensemble predictions. In analogy with data assimila-

tion, the concept of forecast assimilation has been introduced. Statistical modelling

methods have previously been developed for the production of empirical predic-

tions, which are entirely based on observations, for down-scaling the outputs of

physically-derived dynamical models to specific locations/regions, and also for the

calibration of deterministic predictions produced by physically-derived dynamical

models (MOS). This thesis proposes forecast assimilation as a statistical modelling

method for the treatment of multi-model ensemble predictions. Forecast assimila-

tion is an inherently Bayesian procedure for making improved forecasts of observ-

able variables based on information provided by ensemble predictions produced by

distinct climate models. It incorporates many previous techniques such as MOS

and statistical downscaling as special cases.

The methodology used here has been developed and tested progressively in

three stages. First, a univariate Bayesian approach for calibrating and combining

127
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empirical and raw (uncorrected) coupled model ensemble forecasts of the Niño-3.4

index has been developed. Combined 5-month lead Niño-3.4 forecasts for Decem-

ber have been shown to have greater skill than either coupled model or empirical

forecasts separately. Combined forecasts provided more reliable estimates of fore-

cast uncertainty than raw and bias-corrected coupled model forecast. Combined

forecasts have shown a deterministic skill score 5% larger than bias-corrected fore-

casts and 13% larger than empirical forecasts. Combined forecasts have also shown

a probabilistic skill score 13% larger than bias-corrected forecasts and 3% larger

than empirical forecasts. The Bayesian approach for calibrating and combining

Niño-3.4 forecasts improves both accuracy and reliability of the predictions.

Forecast assimilation has then been used for the calibration and combination

of DEMETER coupled model predictions of equatorial Pacific SSTs. Therefore,

in this second stage the method acquired its first spatial (longitudinal) component.

Combined and calibrated forecasts obtained with forecast assimilation have been

shown to have improved reliability in the western Pacific and improved resolution

in the eastern Pacific. The improvement in reliability in the western Pacific has been

obtained without degrading the resolution of the predictions. Reliability is a highly

desirable characteristic of a prediction system. Forecast assimilation improved by

around 75% the reliability of the predictions in the western Pacific and around 25%

the resolution of the predictions in the eastern Pacific. Such an improvement in

resolution could not be achieved by calibration of predictions of a single model.

In the third stage, the Bayesian multi-model forecast assimilation procedure

has been applied for the calibration and combination of spatial field forecasts of

rainfall over South America in DJF. An empirical model based on MCA of rainfall

with SSTs has also been developed to predict DJF South American rainfall. Empir-

ical predictions have been combined with 1-month lead DEMETER coupled model

predictions using the forecast assimilation procedure. Bayesian forecast assimila-

tion has been shown to improve forecast skill over some regions of South America.

Forecast assimilation improved both reliability and resolution of the predictions in

tropical South America. Forecast assimilation improved the reliability of the pre-
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dictions in tropical South America by 65% and the resolution of the predictions by

20%. Eastern Brazil and southeastern South America also had the reliability of the

predictions improved by forecast assimilation. Eastern Brazil had an improvement

of about 50% in reliability while southeasten South America had an improvement of

about 70% in reliability. Combined and calibrated forecasts produced with forecast

assimilation have been compared with both empirical and DEMETER multi-model

forecasts. This comparison revealed that empirical and coupled model forecast have

similar level of skill. For both forecasting systems ENSO years have been found

to be more predictable than neutral years, which have hardly any skill. The trop-

ics and the area of south Brazil, Uruguay, Paraguay and northern Argentina are the

two most predictable regions of South America. Finally, forecast assimilation has

successfully been used for statistical down-scaling of DJF precipitation indices for

three regions of South America and also for local river flow predictions for Tucuruı́

(north of Brazil). Forecast assimilation is a powerful new tool for the calibration

and combination of predictions, capable of improving the skill of probabilistic fore-

casts.

7.2 Future areas of research

The statistical method proposed in this thesis (forecast assimilation) has some ad-

vantages:

• produces well-calibrated probability forecasts

• able to deal with ensemble predictions

• able to deal with multi-model predictions

• preserves spatial structure present in the datasets

• allows spatial patterns to be shifted/corrected

Forecast assimilation also has some potential disadvantages:

• normality assumption

• need for data reduction to be able to estimate regression parameters

• relationships can change with time (stability)
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• need to re-compute calibration equations (regression) each time the forecast-

ing system changes

In summary, the examples of forecast assimilation presented here assume that

the data are close to normally distributed and treat gridded fields as multivariate

vectors instead of taking account of the true spatial nature of the datasets. It would

be interesting in future studies to extend the methods to non-normally distributed

data, to deal with weather and climate extremes, and to develop flexible functional

methods that can exploit the smoothness of spatial fields as an additional con-

straint. There is also scope for improving forecast assimilation by including state-

dependent ensemble spread information in the estimation of the prediction error

covariance S. Another interesting avenue for future research would be to develop

forecast assimilation approaches that use knowledge of the data assimilation oper-

ator H to help estimate G. The use of calibrated predictions obtained with forecast

assimilation as the first guess analysis for data assimilation is also potentially feasi-

ble. In this way forecast assimilation and data assimilation would share information

with each other, making the prediction process cyclic. Non-stationarity of climate

can also affect forecast calibration. The development of more generalised meth-

ods capable of dealing with non-stationary time series might also improve forecast

assimilation. Forecast assimilation is an essential yet often poorly acknowledged

aspect of the forecasting process and hopefully this thesis will stimulate more coor-

dinated activity in this area for weather and climate predictions on all lead times.



Appendix A

Classical and inverse regression

Rather than regress the forecasts x on the observations y as illustrated in Fig. 3.3,

it might at first appear more natural to regress the observations y on the forecasts

x (as is done in MOS). In other words, one can use the physically-derived coupled

model forecasts as predictors in a regression model to obtain predictions of the ob-

servations as illustrated in Fig. A.1. However, the (explanatory) forecast values are

not deterministic control variables but instead contain large amounts of uncertainty.

Furthermore, it can be assumed that climate forecasts are generally more uncertain

than the observed values. This is clearly illustrated in Fig. 3.3, where the forecasts

spread along the vertical axis for a fixed (more certain) observed value. Besides,

the least-squares estimation minimises the (vertical) error of the response variable

for a fixed value of the explanatory variable. However, by fitting a regression model

of observations on forecasts as illustrated in Fig. A.1 one assumes that forecasts are

more certain than are observations – which from Figs. 3.3 and A.1 is clearly not

the case – and minimises (vertical) errors of observations for fixed forecast values.

For these reasons and what follows, it is better to develop a regression model of the

forecasts as a function of the observed values rather than regress observations on

forecasts as in Fig. A.1. Least-squares estimation then corresponds to minimising

forecast error for fixed values of the observed variable.

The calibration of the forecast x̄t to the observed predictand yt can be con-

sidered as a classical calibration problem for an instrumental device. This is a
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Figure A.1: Regression of observed values y on ECMWF coupled model ensem-
ble mean forecasts x̄ of December Niño-3.4 index for the period 1987-1999 (solid
line). Parameter estimates of Eqn. A.8 are â = −6.68oC, b̂ = 1.28 (R2 = 0.93).
Each black dot is one of the m = 9 ensemble members. Big open circles are en-
semble means x̄ = xm. The dashed line shows what would be obtained for perfect
forecasts.

long standing issue in statistical literature, often referred to as the inverse regres-

sion problem (Brown 1994). It is relevant to probability forecasting and so will be

briefly reviewed here.

In the simplest classical calibration setting, a precise instrument gives a mea-

surement yt, while a less precise instrument, to be calibrated, produces x̄t for the

same quantity. The calibration database consists of a time series of paired values

{(yt, x̄t), t = 1, 2, ..., n}. Some classical examples for yt and x̄t are respectively

pressure and gauge readings (Seber 1977), tree-ring counts and (the less precise)

carbon dating measure (Draper and Smith 1998), or a long and costly laboratory

method for determining the concentration of a certain enzyme in blood plasma sam-

ples and a quick and cheap autoanalyser device (Aitchison and Dunsmore 1975).
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In chapter 4, yt is the (more precise) best estimate of the observed variable

(e.g. Niño-3.4 index), while x̄t is the (less precise) physically-derived raw cou-

pled model ensemble-mean forecast of the same variable for the same year t. The

coupled model forecast can be considered to be an instrument for diagnosing the

predictand, and calibrating the forecasts then becomes a standard issue of instru-

mental calibration (Swets 1988). The problem of estimating yt when a new reading

x̄t becomes available is then an inverse regression problem. This is precisely the

problem of calibrating some new forecast x̄t when an historical database is avail-

able.

The established protocol stems at least from Eisenhart (1939) (see also Seber

1977; Aitchison and Dunsmore 1975; Draper and Smith 1998; and Brown 1982).

Since the errors in y-values are negligible when compared with the device (forecast)

errors, yt can be treated as the fixed control values and then one obtains the classical

regression model of x̄t versus yt:

x̄t = α + βyt + εt (A.1)

where εt are independent normally distributed random variables with zero mean

and variance δ. This regression model (illustrated in Fig. 3.3) has been defined in

probabilistic notation by Eqn. (3.5).

The least squares solutions of the calibration equation (A.1) are given by

α̂ = x̄− β̂ y (A.2)

β̂ =
sx̄

sy
r (A.3)

where the hat symbol denotes an estimated parameter, the overbar indicate time

mean over the calibration period n, r is the mutual correlation between x̄t and yt

and sx̄ and sy are the sample standard deviations of x̄t and yt, respectively.
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Then the classical maximum likelihood (ML) estimate of yt is

ŷt = (x̄t − α̂)/β̂. (A.4)

To avoid explosive estimates when β̂ ≈ 0, truncated forms of Eqn. (A.4) can be

defined. In summary, the classical calibration model (A.1) considers the conditional

distribution of x̄ given y (i.e., x̄|y), since the calibrating equation (A.1) describes

the stochastic measures conditionally to the true quantities.

Whereas Williams (1969) and others advocated the use of Eqn. (A.1) to derive

the ML estimate of yt (Eqn. A.4), one can also think of defining the inverse regres-

sion model for y|x̄ and then use it directly for estimating yt. Following this idea,

Krutchkoff (1967, 1969), suggested the so-called inverse estimate

ŷK
t = â+ b̂x̄t (A.5)

based on the least squares estimates

â = y − b̂ x̄ (A.6)

b̂ =
sy

sx̄

r (A.7)

obtained from the inverse regression model

yt = a + bx̄t + et. (A.8)

Classical (Eqn. A.4) and inverse (Eqn. A.5) estimates coincide only when x̄t is

perfectly correlated with yt in the calibration database, i.e., when r = 1, x̄ = ȳ

and sx̄ = sy. The inverse regression approach is currently the prevalent method for

correcting forecast biases in atmospheric sciences (see Kharin and Zwiers 2002;

Pavan and Doblas-Reyes 2000)

Krutchkoff (1967) used simulations to show that the inverse method can have
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smaller MSE than the classical calibration approach (even in the truncated form).

This led to a controversy in which the MSE criterion was criticised for this par-

ticular case. An alternative criteria was proposed and the conditions of relative

superiority of one method over the other were investigated in depth by Williams

(1969), Berkson (1969), Halperin (1970) and Hoadley (1970) among others, and

later on by Chow and Shao (1990).

The Bayesian approach was useful in clarifying the controversy (Hoadley 1970;

Aitchison and Dunsmore 1975). Ideally, one would like the conditional distribution

of y|x̄ but of course this cannot be obtained from the conditional distribution of

x̄|y without also having an estimate of the marginal prior distribution p(y). By

means of the prior p(y) and the likelihood p(x̄|y) the distribution p(y|x̄) can be

obtained using Bayes’ theorem (Eqn. 3.3) and the inverse regression problem can

be solved. In order to understand the relative merits of classical and inverse esti-

mators, note that both are special cases of the Bayesian estimator with exactly the

same normal likelihood distribution given by Eqn. (3.5), but with two different

prior distributions p(y) (Hoadley 1970). The classical maximum likelihood estima-

tor (Eqn. A.4) is obtained using a uniform prior distribution p(y) ∝ 1. A normal

likelihood distribution (Eqn. 3.5) when combined with a uniform prior distribution

produces a posterior distribution p(yt|x̄t) that is normal with mean given by ŷt as in

Eqn. (A.4). As demonstrated by Hoadley (1970), the inverse estimator ŷK
t of Eqn.

(A.5) is obtained using the normal likelihood distribution of Eqn. (3.5) and a more

informative prior, which is given by a normal distribution with mean and variance

estimated from the same n historical values of y used to build the likelihood.

These correspondences are valid for any continuous variables but are easily

demonstrated when x̄ and y are standardized variables, i.e. variables with zero

mean and unit variance (x̄ = ȳ = 0 and sx̄ = sy = 1). For such variables, Eqns.
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(3.8), (3.9), (A.2) and (A.3) give

1

σ2
t

=
1

σot
2

+
r2

δ
(A.9)

µt

σ2
t

=
µot

σot
2

+
r2

δ

( x̄t

r

)

(A.10)

For a uniform prior distribution the term 1/σ2
ot is zero in Eqns. (A.9) and (A.10)

leading to the Bayesian estimator

µ̂t = x̄t/r (A.11)

that is exactly the same as the classical estimator ŷt = x̄t/r obtained from Eqns

(A.2), (A.3) and (A.4) for standardized variables.

For a normal prior distribution with mean µot = ȳ = 0 and variance σ2
ot = sy =

1 (since y is a standardized variable) estimated from the same n historical values of

y used to build the likelihood, it follows from Eqns. (A.9) and (A.10) that

µ̂t =
r

δ∗ + r2
x̄t (A.12)

with δ∗ = E[(x̄ − α − βy)2] = 1 − r2, where the symbol E denotes expectation

(population mean). Then the Bayesian estimator is

µ̂t = r x̄t (A.13)

that is exactly the same as the inverse estimator ŷK
t = r x̄t obtained from Eqns

(A.5), (A.6) and (A.7) for standardized variables.

In the current comparison between classical and inverse estimators, the inverse

will do well if yt lies centrally in the set of previous y-values used in fitting the

inverse calibration (Eqn. A.8). On the other hand, the classical estimator, obtained

using a uniform prior distribution, will be more efficient for more extreme yt-values

(Brown 1982). Since the prior of the inverse regression model is centred on the
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calibration mean ȳ, the comparison of inverse and classical estimates will be unfair

to the latter if the calibration database coincides with the verification database.

Note, however, that rather than using different estimators, the best method is to

choose the best prior for any particular application (the Bayesian approach). To do

this, one needs extra information about y alone. In forecast calibration this is the

most common situation, where a short bivariate time series {(yt, x̄t), t = 1, 2, ..., n}

is used for the calibration and a longer historical climatology can be used to estimate

the prior. The utility and flexibility of the Bayesian approach in combining the two

sources of information is apparent. The use of more complex prior distributions

including other predictors can further help in adapting the prior to the particular

forecasting conditions.



Appendix B

Derivation of the univariate posterior

distribution

From Eqns. (3.4) and (3.5) the prior and the likelihood p.d.f.’s are respectively:

p(yt) = N(µot, σ
2
ot) =

1

(2π)
1

2 σot

exp

[

−
(yt − µot)

2

2 σot
2

]

p(x̄t | yt) = N(α + β yt, δ) =
1

(2π)
1

2 (δ)
1

2

exp

[

−
(x̄t − α− β yt)

2

2 δ

]

Changing the variable to gt = x̄t−α
β

in the likelihood function then gives

p(gt | yt) =
β

(2π)
1

2 (δ)
1

2

exp

[

−
β2(gt − yt)

2

2 δ

]

which is a normal distribution for the random variable gt with mean yt and variance

δ / β2:

p(yt) = N(µot, σ
2
ot)

p(gt | yt) = N(yt,
δ

β2
)
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This is the normal-normal Bayesian model in standard form. Using Bayes’

theorem (Eqn. 3.3), this can be shown to have a posterior p.d.f., which is normal,

with posterior precision (reciprocal variance) given by the sum of prior precision

and likelihood precision (Lee 1997):

1

σ2
t

=
1

σot
2

+
β2

δ

while the posterior mean is the weighted average of prior mean and the rescaled

forecast gt, with weights given by the respective precisions. Substituting gt by x̄t−α
β

then gives

µt

σ2
t

=
µot

σot
2

+
β2

δ

(
x̄t − α

β

)



Appendix C

Observational datasets

Historical (1950-2001) Niño-3.4 index data were obtained from Reynolds optimum

interpolation version 2 SST dataset1 (Reynolds et al., 2002). This dataset was used

for the verification of the Niño-3.4 index forecasts produced in chapter 4.

ERA-40 reanalysis2 sea surface temperatures (referred to as observations) ob-

tained from ECMWF were used for the verification of equatorial Pacific SST anomaly

forecast presented in chapter 5.

A dataset of global monthly precipitation over land (PREC/L)3 on a 2.5 degree

latitude/longitude grid for a 50-year period from 1950 to 2001 (Chen et al. 2002)

was used for the verification of DJF South American precipitation anomaly fore-

casts in chapter 6. This gridded field of monthly precipitation was produced by

Chen et al. (2002) by interpolating gauge observations from the version 2 dataset

of the Global Historical Climatology Network (GHCN) of NOAA/NCDC and the

Climate Anomaly Monitoring System (CAMS) of NOAA/CPC using an optimum

interpolation algorithm.

1Available at http://www.cpc.ncep.noaa.gov/data/indices/index.html
2ERA-40 provides global analysis of variables for the atmosphere, land and ocean surface for

the period 1958-2001. More information is available at http://www.ecmwf.int/research/era/
3Available at ftp://ftp.ncep.noaa.gov/pub/precip/50yr/gauge/2.5deg
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Brier score decomposition

Following Murphy (1973), the Brier score (Eqn. 4.6) can be expressed as the sum

of three components:

BS =
1

n

I∑

i=1

Ni(pi − ōi)
2

︸ ︷︷ ︸

(reliability)

−
1

n

I∑

i=1

Ni(ōi − ō)2

︸ ︷︷ ︸

(resolution)

+ ō(1 − ō)
︸ ︷︷ ︸

(uncertainty)

where Ni is the number of times each probability forecast pi is used in the set of

forecasts being verified. The total number of forecast/event pairs n is simply the

sum of these counts: n =
I∑

i=1

Ni, where I is the number of discrete forecast values

pi. For each probability pi, depicted by the I allowable forecast values, there is a

relative frequency ōi of the observed event. Since the observed event is dichoto-

mous, a single conditional relative frequency defines the conditional distribution of

observations given each forecast pi. The subsample relative frequency, or condi-

tional average observation, is given by

ōi = p(o1|pi) =
1

Ni

∑

k∈Ni

ok,

where ok = 1 if the event occurs for the kth forecast/event pair and ok = 0 if it

does not occur, and the summation is over only those values of k corresponding to
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occasions when the forecast pi was issued. Similarly, the overall (unconditional)

relative frequency, or sample climatology, of the observations is given by

ō =
1

n

n∑

k=1

ok.

More accurate forecasts are characterized by small values of Brier score. There-

fore, the forecaster would aim for the reliability component of the Brier score to be

as small as possible, and the resolution component to be as large (in the absolute

sense) as possible. The uncertainty component depends only on the sample clima-

tological relative frequency ō, and is not affected by the forecasts.

The reliability component summarizes the calibration, or conditional bias, of

the forecasts. It consists of a weighted average of the squared differences between

the forecast probabilities pi and the relative frequencies of the forecast event in

each subsample i. For perfectly reliable forecasts the subsample relative frequency

ōi is exactly equal to the forecast probability pi in each subsample. The relative

frequency of the forecast event ōi should be small when pi = 0 is forecast, and

should be large when pi = 1 is forecast. When pi = 0.5, ōi should be near 0.5. For

reliable, or well-calibrated forecasts, all the squared differences in the reliability

component of the Brier score will be near zero, and their weighted average will be

small.

The resolution component summarizes the ability of the forecasts to discern

subsample relative frequencies forecasts ōi from the observed overall sample clima-

tology relative frequency ō. The forecast probabilities pi do not appear explicitly in

this term, yet it still depends on the forecasts through the sorting of the events mak-

ing up the subsample relative frequency ōi. The resolution component is a weighted

average of the squared differences between ōi and ō. Thus, if the forecasts sort the

observations into subsamples having substantially different relative frequencies ōi

than the overall sample climatology ō, the resolution term will be large. This is a

desirable situation, since the resolution component is subtracted in the Brier score

decomposition equation. Conversely, if the forecasts sort the events into subsam-
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ples with very similar event relative frequencies ōi, the squared differences in the

summation of the resolution term will be small. In such a situation the forecasts

resolve the event only weakly, and the resolution component will be small.

The uncertainty component depends only on the variability of the observations,

and is not influenced by the forecasts. It has minima at zero when the climatologi-

cal probability ō is either zero or one, and a maximum of 0.25 when ō = 0.5. The

uncertainty in the forecasting situation is small (close to zero) when the event be-

ing forecast almost always happens (ō close to 1) or when the event being forecast

almost never happens (ō close to 0). In such situation, always forecasting the cli-

matological probability ō will give generally good results. When the climatological

probability is close to 0.5, there is substantially more uncertainty inherent in the

forecasting situation, and the uncertainty component of the Brier score is commen-

surately larger.
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Reliability diagram

The three components of the Brier score can be interpreted geometrically using a

device known as reliability diagram. Figure 5.3 in chapter 5 shows examples of this

diagram. The dashed line in this diagram is obtained by joining the points defined

by the subsample relative frequency ōi and the correspondent forecast probabil-

ity pi. Forecast probabilities have been ordered and grouped in 10 equally spaced

probability bins from 0 to 1 and the points are plotted in the centre of each bin. For

perfectly reliable forecasts the paired quantity (ōi,pi) should have exactly the same

value, yielding all points falling on the solid diagonal line of the diagram. In other

words, perfectly reliable probability forecasts pi are those that are able to equate the

observed relative frequency ōi. For example, if one looks at a forecast probability of

lets say pi = 0.7 that was issued a sufficiently large number of times, and observes

that in 70% of the forecast cases the event was observed, then the forecast is statis-

tically consistent. If this consistency is noted for all possible forecast probabilities

pi (from 0 to 1) then the forecast is reliable. The histogram plot in the bottom right

corner of the diagram shows a summary of the forecast probability frequency for

the 10 equally spaced probability bins.

The reliability component of the Brier score is the weighted average of the

squared vertical distances between the points of the dashed line and the points of

the solid diagonal line. The closer the dashed line is to the diagonal line the better

is the reliability of the forecasts. Therefore, the reliability can be geometrically
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measured by the area between the dashed and the diagonal lines. The smaller this

area the better is the reliability of the forecasting system.

The geometric interpretation of the resolution component of the Brier score is

achieved by the identification of subsamples with event relative frequencies ōi dif-

ferent from the climatological probability ō, which is represented in the reliability

diagram by the horizontal dotted line. This corresponds to points in the reliability

diagram being well removed (vertically) from the level of the overall sample clima-

tology (horizontal dotted line). Forecasts for which the points fall on this horizontal

line are unable to resolve occasions where the event is more or less likely than the

overall sample climatology and therefore have no resolution. The weighted average

constituting the resolution component is the squares of the vertical distances be-

tween the points of the dashed line and the points of the horizontal (no resolution)

dotted line. These distances will be large for forecasts exhibiting good resolution.

In this case the resolution component will contribute to a small (i.e., good) Brier

score. Forecasts that are most different from the sample climatology probability

make the largest contribution to the resolution component. The resolution can be

geometrically measured by the area between the dashed and the horizontal dotted

lines. The larger this area the better is the resolution of the forecasting system.

The uncertainty can be interpreted imagining the reliability diagram for clima-

tological forecasts. In such situation the diagram is composed by a single dot, since

only a single forecast value (the climatological probability) is ever used (I = 1).

The horizontal position of this dot is at the climatological probability for the event,

and if the sample size is sufficiently large, the long-term climatological probability

will be close to the sample climatological relative frequency. The vertical position

of the single dot will be at the sample climatological relative frequency, locating

it at the intersection of the perfect reliability (diagonal solid) and the no resolution

(horizontal dotted) lines. Therefore, climatological forecasts have perfect (zero)

reliability, since the forecast pi and the conditional relative frequency ōi are both

equal to the climatological probability ō. Similarly, climatological forecasts have

zero resolution since the existence of only I = 1 forecast category prevent discern-
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ing different subsets of forecasting occasions with differing relative frequencies of

the outcomes. Since the reliability and resolution components are both zero, the

Brier score for climatological forecasts is exactly the uncertainty.



Appendix F

3-month lead NDJ rainfall

predictions

This appendix assesses the skill of 1959-2001 NDJ South American rainfall fore-

casts produced by empirical, multi-model and three different Bayesian combined

and calibrated predictions obtained with forecast assimilation (FA, FAEP and FACE)

as described in section 6.5. Empirical forecasts have been produced with the empir-

ical model described in section 6.4.1 but here using the previous season MJJ (May-

Jun-Jul) Pacific and Atlantic SST anomalies as predictor for NDJ South American

rainfall. DEMETER coupled model predictions produced by ECMWF, CNRM and

UKMO for NDF with initial conditions of the 1st of August (3-month lead) are used

to produce the multi-model forecast. This ensures that empirical and coupled model

predictions have temporal consistency of both predictors and predictands, and a fair

comparison is performed.

Figure F.1 shows correlation and BSS maps of NDJ rainfall anomaly predic-

tions produced by empirical, multi-model, FA, FAEP and FACE for the period

1959-2001. Figure F.2 shows the mean ACC of empirical, multi-model, FA, FAEP

and FACE predictions for NDJ. The means ACC is computed for those La Niña,

neutral and El Niño years listed in Table 6.1 and for all (1959-2001) years. Figure

F.3 shows observed and predicted NDJ South American rainfall anomaly compos-

ites for La Niña and El Niño years produced by the empirical, multi-model, FA,
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FAEP and FACE systems. These figures reveal that: a) the tropics and the area

of South Brazil, Uruguay, Paraguay and Northern Argentina are the two most pre-

dictable regions of South America; b) ENSO years are more predictable than neutral

years, the latter having nearly null skill; c) empirical and coupled models have sim-

ilar level of skill when seasonally forecasting NDJ South American rainfall anoma-

lies at 3-month lead time; and d) Bayesian forecast assimilation improves forecast

skill in terms of both ACC and BSS.

a) Empirical b) Multi-model c) FA d) FAEP e) FACE

f) Empirical g) Multi-model h) FA i) FAEP j) FACE

Figure F.1: Correlation and BSS maps of NDJ rainfall anomaly predictions for the
period 1959-2001. The BSS is for the event ’rainfall anomalies less than or equal
to zero’.
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Figure F.2: NDJ mean anomaly correlation coefficient (ACC) for empirical, multi-
model, FA, FAEP and FACE forecasts of La Niña, neutral, El Niño years (listed in
Table 6.1) and all (1959-2001) years. The vertical solid lines on the top of the white
bars indicate the 95% confidence interval for the mean ACC of empirical forecasts,
which were obtained using a bootstrap resampling procedure.
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a) Obs (La Nina) b) Empirical (La Nina)

0.70

c) Multi-model (La Nina)

0.23

d) FA (La Nina)

0.88

e) FAEP (La Nina)

0.79

f) FACE (La Nina)

0.82

g) Obs (El Nino) h) Empirical (El Nino)

0.94

i) Multi-model (El Nino)

0.60

j) FA (El Nino)

0.95

k) FAEP (El Nino)

0.96

l) FACE (El Nino)

0.96

Figure F.3: NDJ South American rainfall anomaly composites (mm.day−1) for
those La Niña and El Niño years listed in Table 6.1. a) La Niña composite of
observed rainfall anomalies . Panels b-f) Empirical, multi-model, FA, FAEP and
FACE La Niña forecast composites. g) El Niño composite of observed rainfall
anomalies. Panels h-l) Empirical, multi-model, FA, FAEP and FACE El Niño fore-
cast composites. The number in the bottom right hand corner of panels b-f) and h-l)
is the correlation between the observed (panels a and g) and the forecast composite.



Glossary of Acronyms

ACC Anomaly Correlation Coefficient

AGCM(s) Atmospheric General Circulation Model(s)

ASO August-September-October

BS Brier Score

BSS Brier Skill Score

BMA Bayesian Model Averaging

CAMS Climate Anomaly Monitoring System

CCA Canonical Correlation Analysis

CERFACS European Centre for Research and Advanced Training in Scientific

Computation

CGCM(s) Coupled ocean-atmosphere General Circulation Model(s)

CNRM Centre National de Recherches Météorologiques

CPC Climate Prediction Center

DEMETER Development of a European Multimodel Ensemble system for seasonal

to inTERannual prediction

DJF December-January-February

DSP Dynamical Seasonal Prediction

ECMWF European Centre for Medium-range Weather Forecasts

ENSO El Niño-Southern Oscillation

ERA-40 ECMWF 40 years Re-Analysis

EU European Union

FA Forecast Assimilation

FACE Forecast Assimilation of Coupled model and Empirical forecasts

FAEP Forecast Assimilation with Empirical Prior

GCM(s) General Circulation Model(s)
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GHCM Global Historical Climatology Network

GMT Greenwich Mean Time

hPa Hecto Pascal

INGV Istituto Nazionale de Geofisica e Vulcanologia

IRI International Research Institute for Climate Prediction

ITCZ Intertropical Convergence Zone

JJA June-July-August

LODYC Laboratoire d’ Océanographie Dynamique et de Climatologie

MAE Mean Absolute Error

MAM March-April-May

MAP Maximum a Posteriori

MAX Maximum

MCA Maximum Covariance Analysis

MCS Mesoscale Convective Systems

MIN Minimum

MJJ May-June-July

ML Maximum Likelihood

MOS Model Output Statistics

MPI Max-Plank Institut für Meteorologie

MSE Mean Square Error

NCEP National Centers for Environmental Prediction

NDJ November-December-January

NOAA National Oceanic and Atmospheric Administration

p.d.f. Probability density function

OLS Ordinary Least squares

P.I. Prediction Interval

PNA Pacific North American

PREC/L Precipitation Reconstruction over land

PROVOST Prediction of Climate Variations on Seasonal to Interannual Time-scales

PSA Pacific South American
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RMSE Root Mean Square Error

SACZ South Atlantic Convergence Zone

SCF Squared Covariance Fraction

SLP Sea Level Pressure

SON September-October-November

SSCP Subtropical South-Central Pacific

SST(s) Sea Surface Temperature(s)

SVD Singular Value Decomposition

UKMO United Kingdom Meteorological Office



Glossary of Notation

µ mean

σ2 variance

σ standard deviation

r correlation

R2 coefficient of determination

b1 moment measure of skewness

| standard statistical symbol denoting “given” (conditional upon)

∼ standard statistical symbol denoting “is distributed as”

N standard statistical symbol denoting a “Normal” (Gaussian) p.d.f.

ˆ standard statistical symbol denoting an estimated quantity or parameter

E standard statistical symbol denoting expectation (population mean)

p(.) probability density function (p.d.f.)

Pr(E) probability of an event E

Φ(y∗) area under the standard normal curve to the left of y∗

m total number of members of an ensemble forecast

n number of sample objects in the calibration period

t time for which a forecast is issued

x model state or model prediction data

x̄ ensemble mean forecast or historical mean of x

x̄ sample mean of x̄

x̄t ensemble mean forecast for time t

y observational data or future observable
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ȳ sample mean of y

yt observable variable at time t

z observational SST data

z̄ sample mean of z

Zt standardized forecast errors

µot mean of the prior distribution of the univariate Normal model

σot
2 variance of the prior distribution of the univariate Normal model

µt mean of the posterior distribution of the univariate Normal model

σt
2 variance of the posterior distribution of the univariate Normal model

α intercept parameter of the linear regression of x̄t on yt

β slope parameter of the linear regression of x̄t on yt

δ constant variance parameter of the linear regression of x̄t on yt

εt residuals of the linear regression of x̄t on yt

sx̄ sample standard deviation of x̄t

sy sample standard deviation of yt

sx sample standard deviation of an ensemble forecast composed by m members

a intercept parameter of the linear regression of yt on x̄t

b slope parameter of the linear regression of yt on x̄t

λ constant variance parameter of the linear regression of yt on x̄t

et residuals of the linear regression of yt on x̄t

ψt July Niño-3.4 monthly values

ψ̄t sample mean of ψt

S2
t standard deviation of ψt
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β0 intercept of the linear regression of December on July (ψt) Niño-3.4

β1 slope of the linear regression of December on July (ψt) Niño-3.4

ε′t residuals of the linear regression of December on July (ψt) Niño-3.4

p model space dimension

q observation space dimension

v observed SST space dimension

F T transpose of matrix F

F−1 inverse of matrix F

X matrix of model prediction anomalies

Y matrix of observable anomalies

Z matrix of observed SST anomalies

Sxx covariance matrix of model predictions

Syy covariance matrix of observables

Szz covariance matrix of observed SST

Sxy cross-covariance matrix

Syx cross-covariance matrix

Syz cross-covariance matrix

Szy cross-covariance matrix

Σ covariance of the multivariate Normal distribution

U matrix of Empirical Orthogonal Functions

V matrix of Principal Components

Σ∗ matrix of singular values
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Data assimilation Forecast Assimilation

xa analysis model state ya forecast observable state

xb background model state yb background observable state

A analysis error covariance D forecast error covariance

B background forecast C background observable

error covariance covariance

H observation operator G forecast operator

K gain/weight matrix L gain/weight matrix

R observation error covariance S forecast error covariance

Jx|y cost function Jy|x cost function

εB normally distributed errors with zero mean and covariance B

εR normally distributed errors with zero mean and covariance R

εC normally distributed errors with zero mean and covariance C

εS normally distributed errors with zero mean and covariance S

M empirical prediction operator

T empirical prediction covariance

εT normally distributed errors with zero mean and covariance T

yo bias vector

zo bias vector

k numbering of the n forecast/observation pairs

pk forecast probability

ok binary observation

ō sample climatological mean of binary observation



References

Aitchison, J. and I. R. Dunsmore, 1975. Statistical prediction analysis. Cambridge

University Press. 273 pp.

Alves, O., G. Wang, A. Zhong, N. Smith, G. Warren, A. Marshall, F. Tzeitkin, and

A. Schiller, 2002. POAMA: Bureau of Meteorology operational coupled model

seasonal forecast system. Proceeding of the ECMWF Workshop on the Role of

the Upper Ocean in Medium and Extended Range Forecasting, pages 22–32.

Anderson, J. L., 1996. A method for producing and evaluating probabilistic fore-

casts from ensemble model integrations. J. Climate, 9:1518–1530.

Anderson, J. L., H. van den Dool, A. Barnston, W. Chen, W. Stern, and J. Ploshay,

1999. Present-day capabilities of numerical and statistical models for atmo-

spheric extratropical seasonal simulation and prediction. Bull. Am. Meteorol.

Soc., 80:1349–1361.

Atger, F., 2003. Spatial and interannual variability of the reliability of ensemble-

based probabilistic forecasts: Consequences for calibration. Mon. Wea. Rev., 131:

1509–1523.

Balmaseda, M. A., D. L. T. Anderson, and M. K. Davey, 1994. ENSO prediction

using a dynamical ocean model coupled to statistical atmospheres. Tellus, 46A:

497–511.

Balmaseda, M. A., M. K. Davey, and D. L. T. Anderson, 1995. Decadal and sea-

sonal dependence of ENSO prediction skill. J. Climate, 8:2705–2715.

158



References 159

Barnard, G. A., 1963. New methods of quality control. Journal of the Royal Statis-

tical Society, Series A, 126:255–259.

Barnston, A. G., M. H. Glantz, and Y. He, 1999a. Predictive skill of statistical and

dynamical climate models in SST forecasts during the 1997-98 El Niño episode

and the 1998 La Niña onset. Bull. Am. Meteorol. Soc., 80:217–243.

Barnston, A. G., A. Leetmaa, V. E. Kousky, R. E. Livezey, E. A. O’Lenic,

H. van den Dool, A. J. Wagner, and D. A. Unger, 1999b. NCEP forecasts of

the El Niño of 1997-1998 and its US impacts. Bull. Am. Meteorol. Soc., 80:

1829–1852.

Barros, V. and G. E. Silvestri, 2002. The relation between sea surface temperature

at the subtropical south-central Pacific and precipitation in southeastern South

America. J. Climate, 15:251–267.

Bates, J. M. and C. W. J. Granger, 1969. The combination of forecasts. Operational

Research Quarterly, 20:451–468.

Battisti, D. S., 1998. Dynamics and thermodynamics of a warming event in a cou-

pled atmosphere-ocean model. J. Atmos. Sci., 45:2889–2919.

Berkson, J., 1969. Estimation of a linear function for a calibration line: Considera-

tion of a recent proposal. Technometrics, 11:649–660.

Berliner, L. M., R. A. Levine, and D. J. Shea, 2000a. Bayesian climate change

assessment. J. Climate, 13:3805–3820.

Berliner, L. M., C. K. Wikle, and N. Cressie, 2000b. Long-lead prediction of Pacific

SSTs via Bayesian dynamic modeling. J. Climate, 13:3953–3968.

Bjerknes, J., 1966. A possible response of the atmospheric Hadley circulation to

equatorial anomalies of temperature. Tellus, 18:820–829.



References 160

Bouttier, F. and P. Courtier, 1999. Data assimilation concepts and methods.

ECMWF Meteorological Training Course Lecture Series. 59 pp. Available from

http://www.ecmwf.int.

Brankovic, C., T. N. Palmer, and L. Ferranti, 1994. Predictability of seasonal atmo-

spheric variations. J. Climate, 7:217–237.

Brier, G. W., 1950. Verification of forecasts expressed in terms of probability. Mon.

Wea. Rev., 78:1–3.

Brown, P. J., 1982. Multivariate calibration. Journal of the Royal Statistical Society,

Series B, 44(3):287–321.

Brown, P. J., 1994. Measurement, regression and calibration. Oxford Science Pub-

lications. Oxford Statistical Science Series, 12. 210 pp.

Brunet, N., R. Verret, and N. Yacowar, 1988. An objective comparison of model

output statistics and ”perfec prog” systems in producing numerical weather ele-

ment forecasts. Weather and Forecasting, 3:273–283.

Bunn, D. W., 1975. A Bayesian approach to the linear combination of forecasts.

Operational Research Quarterly, 26:325–329.

Bunn, D. W., 1985. Statistical efficiency on the linear combination of forecasts. Int.

Journal of Forecasting, 1:151–163.

Burgers, G. and D. B. Stephenson, 1999. The ”Normality” of El Niño. Geophysical

Research Letters, 26(8):1027–1030.

Carter, G. M., J. P. Dallavalle, and H. R. Glahn, 1989. Statistical forecasts based

on the National Meteorological Center’s numerical weather prediction system.

Weather and Forecasting, 4:401–412.

Cavalcanti, I. F. A., J. A. Marengo, P. Satyamurty, C. A. Nobre, I. Trosnikov, J. P.

Bonatti, A. O. Manzi, T. Tarasova, L. P. Pezzi, C. D’Almeida, G. Sampaio, C. C.



References 161

Castro, M. B. Sanches, and H. Camargo, 2002. Global climatological features in

a simulation using the CPTEC-COLA AGCM. J. Climate, 15(21):2965–2988.

Challinor, A. J., J. M. Slingo, T. R. Wheeler, and F. J. Doblas-Reyes, 2005. Prob-

abilistic simulations of crop yield over western India using the DEMETER sea-

sonal hindcast ensembles. Tellus. In press.

Charney, J. G. and J. Shukla, 1981. Predictability of monsoons. Monsoon Dynam-

ics, pages 99–109. Cambridge University Press. Editors: Lighthill, J. and Pearce,

R.

Chatfield, C., 2001. Time-series forecasting. Chapman and Hall/CRC. 267 pp.

Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002. Global land precipitation:

A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol., 3:

249–266.

Chow, S. and J. Shao, 1990. On the difference between the classical and inverse

methods of calibration. Appl. Statist., 39(2):219–228.

Clemen, R. T., 1985. Extraneous expert information. Journal of Forecasting, 4:

329–348.

Clemen, R. T., 1989. Combining forecasts: A review and annotated bibliography.

Int. Journal of Forecasting, 5:559–583.

Clemen, R. T. and A. H. Murphy, 1986a. Objective and subjective precipitation

probability forecasts: statistical analysis of some interrelationships. Weather and

Forecasting, 1:56–65.

Clemen, R. T. and A. H. Murphy, 1986b. Objective and subjective precipitation

probability forecasts: some methods for improving forecast quality. Weather and

Forecasting, 1:213–218.

Coelho, C. A. S., S. Pezzulli, M. Balmaseda, F. J. Doblas-Reyes, and D. B. Stephen-

son, 2003. Skill of coupled model seasonal forecasts: A Bayesian assessment of



References 162

ECMWF ENSO forecasts. European Centre for Medium-Range Weather Fore-

casts Technical Memorandum number 426. 16 pp.

Coelho, C. A. S., S. Pezzulli, M. Balmaseda, F. J. Doblas-Reyes, and D. B. Stephen-

son, 2004. Forecast calibration and combination: A simple Bayesian approach

for ENSO. J. Climate, 17:1504–1516.

Coelho, C. A. S., C. B. Uvo, and T. Ambrizzi, 2002. Exploring the impacts of

the tropical Pacific SST on the precipitation patterns over South America during

ENSO periods. Theor. Appl. Climatol., 71:185–197.

Colman, A. W. and M. K. Davey, 2003. Statistical prediction of global sea-surface

temperature anomalies. Int. J. Climatol., 23:1677–1697.

Conte, M., C. DeSimone, and C. Finizio, 1980. Post-processing of numerical mod-

els: Forecasting the maximum temperature at Milano Linate. Rev. Meteorol.

Aeronaut., 40:247–265.

Courtier, P., 1997. Dual formulation of four-dimensional variational assimilation.

Q. J. R. Meteorol. Soc., 123:2449–2461.

Daley, R., 1991. Atmospheric data analysis. Cambridge Atmospheric and Space

Science Series. Cambridge University Press. ISBN 0-521-38215-7, 457 pp.

Davey, M. K., M. Huddleston, K. R. Sperber, P. Braconnot, F. Bryan, D. Chen, R. A.

Colman, C. Cooper, U. Cubasch, P. Delecluse, D. DeWitt, L. Fairhead, G. Flato,

C. Gordon, T. Hogan, M. Ji, M. Kimoto, A. Kitoh, T. R. Knutson, M. Latif, H. Le

Treut, T. Li, S. Manabe, C. R. Mechoso, G. A. Meehl, S. B. Power, E. Roeckner,

L. Terray, A. Vintzileos, R. Voss, B. Wang, W. M. Washington, I. Yoshikawa,

J.-Y. Yu, S. Yukimoto, and S. E. Zebiak, 2002. STOIC: a study of coupled model

climatology and variability in tropical ocean regions. Clim. Dynamics, 18:403–

420.

Davey, M. K., S. Ineson, and M. A. Balmaseda, 1994. Simulation and hindcasts of

tropical Pacific Ocean interannual variability. Tellus, 46A:433–447.



References 163

Davis, R. E., 1976. Predictability of sea surface temperature and sea level pressure

anomalies over the north Pacific ocean. J. Phys. Oceanography, 6:249–266.

de Menezes, L. M., D. W. Bunn, and J. W. Taylor, 2000. Review guidelines for

the use of combined forecasts. European Journal of Operational Research, 120:

190–204.
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