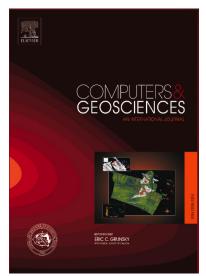


Potential for using climate data to predict dengue in Brazil

Rachel Lowe University of Exeter R.Lowe@exeter.ac.uk

Second EUROBRISA workshop, Dartmoor, Devon, UK 23 July 2009

joint work with: David B. Stephenson, Trevor C. Bailey (UoE) Richard Graham (Met Office), Caio A. S. Coelho (CPTEC) Marilia Sá Carvalho, Christovam Barcellos (FIOCRUZ)


- Summary of second year achievements for EUROBRISA
- Dengue fever in Brazil
- Research aim
- Data and statistical model
- Selected results and model predictive validity
- Disscussion and Conclusions

Since Paraty March 2008...

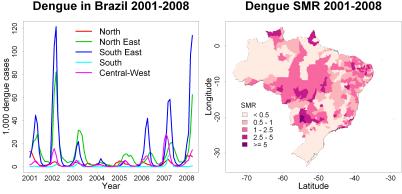
- Health application: collaboration with FIOCRUZ.
- Visualisation: co-authored conference paper (Slingsby *et al.*, 2009)
- Visualising Seasonal Climate Forecasts in Google Earth winning entry to Google's KML in Research Competition (http://www.gicentre.org/climatekml/)
- Brazil visit -
 - CPTEC: Obtained climate model data, explored climate-driven biological dengue fever model.
 - FIOCRUZ: Expert advice for dengue prediction in Brazil.
 - IBGE: Access to socio-economic / demographic / geographical data.
- STATGIS09 conference: GeoInformatics for environmental surveillance, Milos Greece 17-19 June.

Forthcoming publication

Invited to publish extended version of Lowe et al., (2009) in a special issue on 'GeoInformatics for environmental surveillance' to be published in Computers & Geosciences.

Dengue fever in Brazil

- Dengue viruses transmitted by Aedes Agyipti mosquitoes.
- 'Break-bone fever' severe joint and muscle pain.
- 3 million cases from 2001-2008.
- Seasonal pattern increased cases Jan-Apr when climate warmer, more humid.
- 2008 epidemic: 250,000 cases, 181 confirmed deaths.

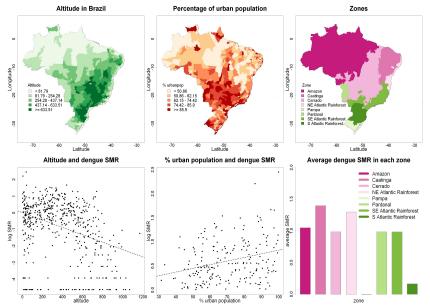


Spatial and temporal dengue distribution

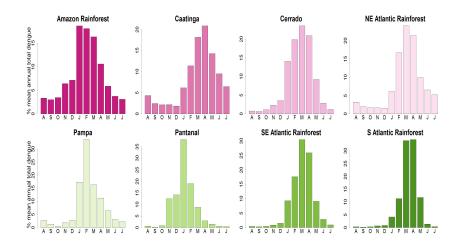
Time series of dengue cases in main regions and standardised morbidity ratios (SMR) for microregions, Brazil 2001-2008

$$SMR_i = \frac{\sum y_i}{\sum e_i}, e_i = p_i r, r = \frac{\sum y_i}{\sum p_i}$$

where y_i is dengue, e_i is expected dengue and p_i is population for in microregion *i*.

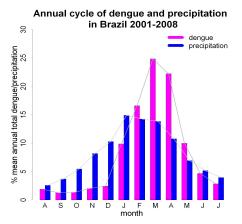

Dengue SMR 2001-2008

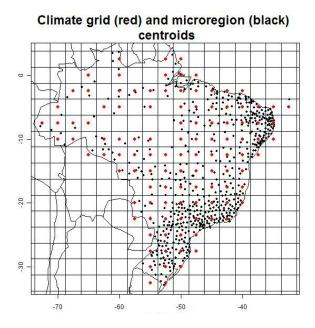
Assess the potential of integrating seasonal climate forecast information in a dengue early warning system (EWS) in Brazil


- Is dengue incidence significantly related to monthly climate variables and which time lags are important?
- To what extent can observed climate be replaced with forecast climate to predict dengue epidemics?

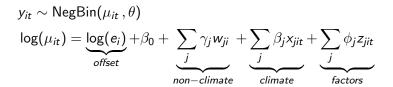
Is dengue incidence significantly related to monthly climate variables and which time lags are important?

Exploratory Data Analysis - spatial covariates


Exploratory Data Analysis - annual cycle



Climate data


Observed Climate grid $2.5^\circ \times 2.5^\circ$

- Monthly observed precipitation totals (GPCP)
- Monthly reanalysis mean air temperature (NCEP/NCAR)
- Monthly reanalysis mean relative humidity (NCEP/NCAR)
- NINO 3.4 index (NOAA)

Model framework

 y_{it} dengue count for microregion $i = 1, \dots, 558$ and time $t = 1, \dots, 88$ μ_{it} mean dengue count

 θ scale parameter

$$e_i = p_i r$$

 p_i population in microregion i

r overall average dengue rate per month

 w_{ji} altitude and % of urban population

 x_{jit} precipitation (0,2), temperature (0,1,3), relative humidity (3), nino3.4 (6)

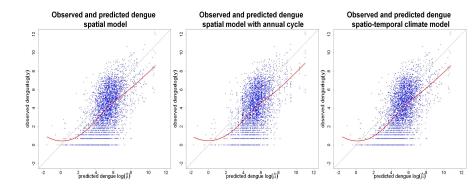
 z_{iit} factors reflecting zone, month and interaction between month and zone

Table: Akaike Information Criteria (AIC) and adjusted R^2 for (1) Model with spatial covariates, (2) Model with spatial covariates and annual cycle and (3) Model with spatial covariates, annual cycle and climate covariates.

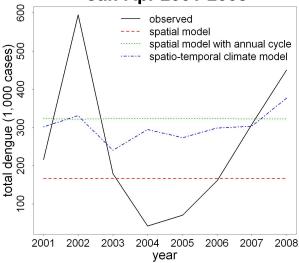
Model	AIC	R^2
spatial	326548	0.14
spatial-annual cycle	311796	0.37
spatial-temporal climate	310293	0.39

$$\mathsf{AIC} = -2\log\Lambda + 2p = 2(\log L_{M_s} - \log L_M) + 2p$$

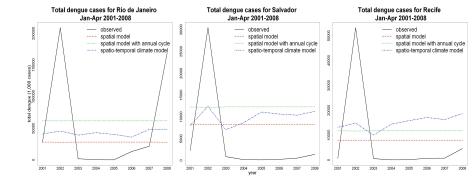
$$R^{2} = \frac{\text{scaled deviance } M_{n} - \text{scaled deviance } M_{n}}{\text{scaled deviance } M_{n}}$$


$$R_a^2 = 1 - (1 - R^2)(\frac{n - 1}{n - p})$$
¹⁴

Observed Climate	Coefficient estimate (standard error)
Precipitation lag 0	-0.031 (0.0036)
Precipitation lag 2	0.022 (0.0036)
Temperature lag 0	0.172 (0.0239)
Temperature lag 1	-0.107 (0.0292)
Temperature lag 3	0.339 (0.0172)
Relative humidity lag 3	0.047 (0.0028)
Nino3.4 lag 6	-0.170 (0.0145)


• Climate lag 2-3 - influence mosquito life cycle?

• Climate lag 0-1 - promote or inhibit dengue transmission?


Leave out Jan-Apr season for each microregion and each year

Total dengue cases for Brazil Jan-Apr 2001-2008

Time series - Microregion level

Spatio-temporal climate model skill

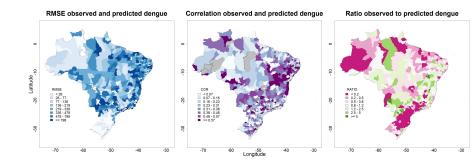
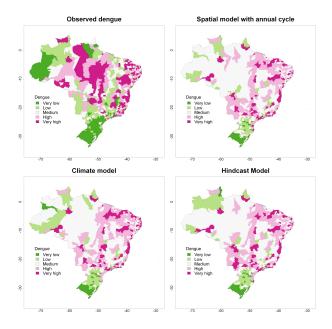


Table: 2 \times 2 contingency table for binary event: dengue in upper quartile (based on dengue distribution Jan-Apr 2001-2008)

			Observed	
		Yes	No	Total
Predicted	Yes	814	1053	1867
	No	304	2293	2597
	Total	1118	3346	4464

hit rate = 73%, false alarm rate = 31%


To what extent can observed climate be replaced with forecast climate to predict dengue epidemics?

- Temperature and precipitation hindcasts
- Met Office seasonal forecasting system GloSea3
 - ensemble forecast
 - 6 forecast lead times

Observed		Hindcast	
Prec lag 0	-0.031 (0.0036)	Prec lead 5	0.035 (0.0131)
Prec lag 2	0.022 (0.0036)	Prec lead 3	0.007 (0.0131)
Temp lag 0	0.172 (0.0239)	Temp lead 5	0.195 (0.0224)
Temp lag 1	-0.107 (0.0292)	Temp lead 4	-0.066 (0.0224)
Temp lag 3	0.339 (0.0172)	Temp lead 2	0.020 (0.0161)
Rel.Hum lag 3	0.339 (0.0172)	Climatology	-0.036 (0.0026)

- Significance maintained for temperature hindcasts.
- Standard errors for hindcast precipitation larger
 → predicted climate more uncertain than observed climate.

2008 Epidemic: model prediction

Discussion and Conclusion

- Dengue incidence significantly related to climate covariates.
- Some evidence for inclusion of seasonal climate forecasts in dengue EWS in Brazil.

Model improvement

- Include serotype infromation
- Non-linear relationship between dengue and climate?
- Downscaling climate data from coarse to fine grid to make dengue predictions more microregion specific?

Next step: include spatio-temporal random effects to account for:

- unobserved confounding factors
- extra-Poisson variability

EUROBRISA requirements

Ideally : monthly mean and variance for precipitation (and temperature) at each grid point for each lead.