Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions

Creating maps of probabilistic forecasts

Tim Jupp

University of Exeter

July 22, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
Outlin	ie				

- Acknowledgements
- 2 Probabilistic forecasts
- 3 Triangles and colours

Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
Outlir	ne				

- Acknowledgements
- Probabilistic forecasts
- 3 Triangles and colours

5 Conclusions

◆□▶ ◆圖▶ ◆≧▶ ◆≧▶ ≧ ∽��?

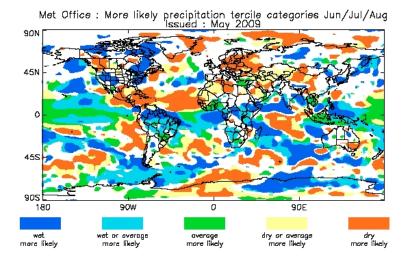
Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
Ackno	owledgements				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

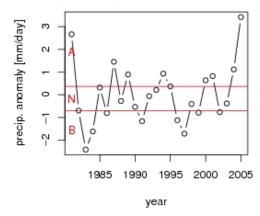
This is work in progress, involving:

- Rachel Lowe
- Caio Coelho
- David Stephenson

Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
Outlir	ne				


- Acknowledgements
- 2 Probabilistic forecasts
- 3 Triangles and colours

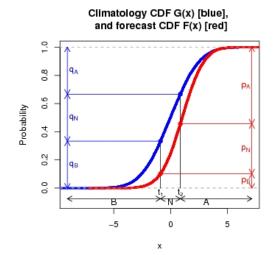
Probabilistic Forecasting


- the forecast at each point is a *distribution*
- How should we assign colours to distributions?

Conclusions

Skill

The terciles of a climatology


Observed DJF precip anomaly [mm/day] at lon: -62.5 lat: -12.5

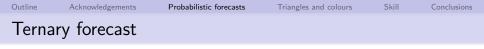
• the categories B, N and A are observed with equal frequency

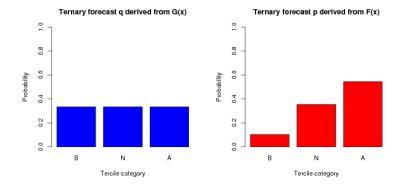
 Outline
 Acknowledgements
 Probabilistic forecasts
 Triangles and colours
 Skill
 Conclusions

Continuous distributions (CDF)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• climatology: G(x), forecast: F(x)


Skill


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Continuous distributions (PDF)

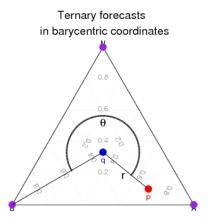
• climatology: g(x), forecast: f(x)

(日)、

э.

- ternary climatology: $\mathbf{q} = (1/3, 1/3, 1/3)$
- ternary forecast: $\mathbf{p} = (p_B, p_N, p_A)$

Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
Outlin	ne				


- Acknowledgements
- Probabilistic forecasts
- 3 Triangles and colours
- 4 Skill

5 Conclusions

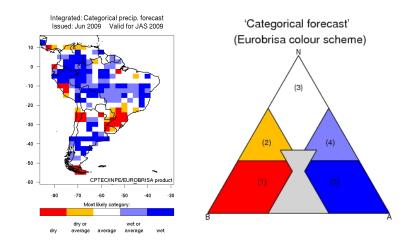
▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへで

Skill Conclusio

Barycentric coordinates

- every ternary forecast is a point in the triangle, including
- the climatology **q**
- ${\scriptstyle \bullet}\,$ the observed state ${\scriptstyle o}\,$

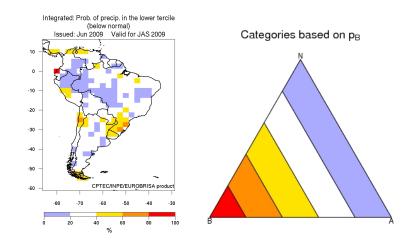
Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
Curre	nt visualisati	on methods			


Usually based on a discretisation of ternary forecast space. For example:

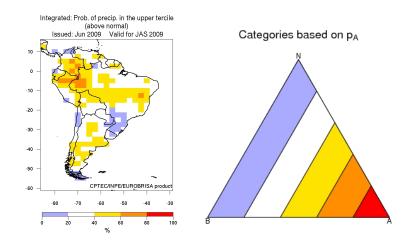
- 1 (Dry): ($p_B > 2/5$ and $p_N < 1/3$ and $p_A < 1/3$).
- 2 (Dry or normal): $(p_B > 1/3 \text{ and } p_N > 2/5)$ or $(p_B > 2/5 \text{ and } p_N > 1/3)$.
- 3 (Normal): $(p_B < 1/3 \text{ and } p_N > 2/5 \text{ and } p_A < 1/3)$.
- 4 (Wet or normal): $(p_N > 1/3 \text{ and } p_A > 2/5)$ or $(p_N > 2/5 \text{ and } p_A > 1/3)$.

• 5 (Wet): $(p_B < 1/3 \text{ and } p_N < 1/3 \text{ and } p_A > 2/5)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

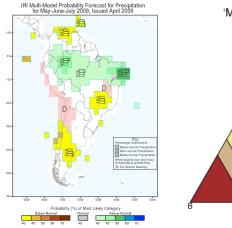

Current visualisation methods (EUROBRISA categorical)

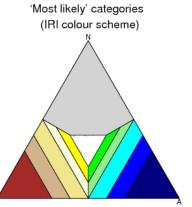
Skill Conc


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Current visualisation methods (EUROBRISA lower)

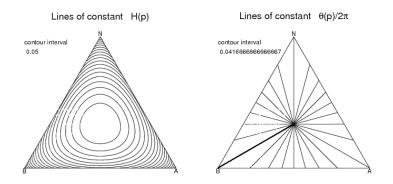
Skill Concl


Current visualisation methods (EUROBRISA upper)



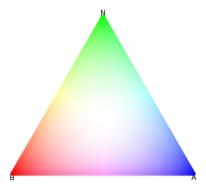
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Skill


Current visualisation methods (IRI)

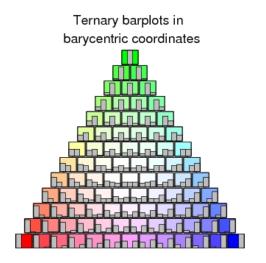
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

A continuum of colours in forecast space

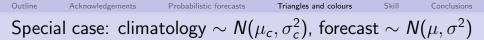


$$H(\mathbf{p}) = \frac{1}{\log 3} \sum_{i \in \{B, N, A\}} p_i \log 3p_i$$

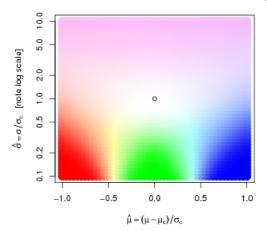
H(p) is a measure of the subjective certainty in a forecast


Our proposed colour scheme

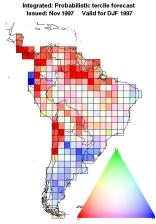
Assignment of colours to ternary forecasts



- use HSV (hue-saturation-value) colour space
- hue $\propto \theta(\mathbf{p})$
- saturation $\propto H(\mathbf{p})$


$\mathsf{Colours} \Leftrightarrow \mathsf{barplots}$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ◎


Colour of forecast N(μ , σ^2) with climatology N(μ_c , σ_c^2)

(日)、

э

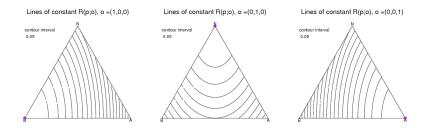
Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
An ex	ample				

University of Exeter/CPTEC/INPE/EUROBRISA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
Outli	ne				

- Acknowledgements
- Probabilistic forecasts
- 3 Triangles and colours



5 Conclusions

Measuring skill: the ranked probability score

Compare forecast ${\boldsymbol{p}}$ with subsequent observation ${\boldsymbol{o}}$

$$R(\mathbf{p}; \mathbf{o}) = \frac{1}{2} \left[(p_B - o_B)^2 + (p_B + p_N - o_B - o_N)^2 \right]$$

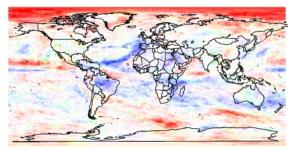
Set radius $\propto 1/\text{RPSS}$

Integrated: Probabilistic tercile forecast Issued: Nov 1997 Valid for DJF 1997 2200 climatological forecast

University of Exeter/CPTEC/INPE/EUROBRISA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Set radius $\propto 1/RPSS$ with masking


Integrated: Probabilistic tercile forecast Issued: Nov 1997 Valid for DJF 1997 climatological forecast $\cap \cap$

University of Exeter/CPTEC/INPE/EUROBRISA

Outline Acknowledgements Probabilistic forecasts Triangles and colours Skill

Decadal climate forecasting?

Precip: change in tercile probabilities over C21 nexp = 1 model = ukmo hadgem1 month = oct

Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
Outlir	ne				

- Acknowledgements
- Probabilistic forecasts
- 3 Triangles and colours

Outline	Acknowledgements	Probabilistic forecasts	Triangles and colours	Skill	Conclusions
Concl	usions				

- assign unique colour to each ternary forecast
- barycentric coordinates aid understanding
- greater subjective certainty \Rightarrow stronger colour
- forecasts close to climatology have weak colours

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで