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â Just a few comments on:

ß the fundamental concepts arising in spatial statistical modelling

ß the kind of geostatistical modelling ideas that might be useful in ‘post

processing’ data relating to seasonal forecasting applications
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Geostatistical Data

â The term ‘geostatistical’ data is used to refer to a set of spatially referenced

measurements (regular grid or irregular) on some phenomenon which can in

principle occur continuously across the study region of interest (precipitation,

temperature etc.)

â We wish to understand the spatial probability distribution of values over the study

region given the values at the fixed measurement points (and maybe other

covariates observed in the same region).

â Ultimately, we wish to use such models to obtain good predictions of values at

points other than those where measurements are observed.
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Basic concepts in Spatial Modelling

â Represent a spatial stochastic process by a set of (usually non-independent)

random variables indexed by vector location s = (s1, s2)
′ i.e. {Y (s), s ∈ R}

â Can talk about first order effects, that is behaviour of the process mean -

E(Y (s))

â and second order effects, that is behaviour of the spatial correlation structure -

Cov (Y (si), Y (sj))

â Both components are important in understanding a spatial process. In practice

the observed behaviour of spatial phenomena involves a confounding of both.
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Random Field with varying spatial covariance range
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Different realisations of same Random Field
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Basic concepts in Spatial Modelling

â So the broad objective in spatial modelling is to understand as much as possible

about the stochastic process giving rise to the data. That is about the joint

distribution of {Y (s1), . . . , Y (sn)}

â This will involve both understanding its mean (first order) behaviour:

µ(s) = E(Y (s)) as a function of space (and possibly other covariates).

â Also understanding its spatial correlation (second order) structure:

Cov (Y (si), Y (sj)) as a function of space

â In general this is not going to be easy! The observed behaviour of spatial

phenomena usually involves a confounding of both. And we usually have very

little repetition to work with (often just a single measurement at each spatial

location)

.

And we also have the complexity of real geography to deal with
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Statistical perspectives on geostatistical data

â Y (s) is random variable representing value at vector location s. Process is:

{Y (s), s ∈ R}. We have measurements on this at fixed locations

(s1, . . . , sn).

â First order properties—mean value µ(s) = E(Y (s))

â Second order properties—covariance function

C(si, sj) = Cov (Y (si), Y (sj))

â Where unambiguous can refer to Y (si) as simply Yi with corresponding

observed value yi. Might have measurements on additional covariates xi at each

si to assist in modelling. In which case the mean may be µ(s,x) and the

covariance function may be C(si, sj ,xi,xj)
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Stationarity and Isotropy

â Process is stationary if:

ß µ(s) = µ (constant over space)

ß Var(Y (s)) = σ2 (constant over space)

ß and covariance depends only on vector difference (distance and direction)

between si and sj (not on absolute location) viz:

Cov (Y (si), Y (sj)) = C(si − sj) = C(d)

â Process is isotropic if latter dependence is only on length of d (d) and not

direction.
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Essence of statistical modelling of geostatistical data

â Broad thrust is to think of the process being modelled as comprising two

components:

ß A systematic (trend) component (deterministic) representing how the mean

value µ(s) varies across space (and with covariates if present).

ß A random component (stochastic) comprising a stationary (anisotropic or

isotropic) random field with a covariance structure dependent upon spatial

separation
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Essence of statistical modelling of geostatistical data

â The typical geostatistical model assumes some simple transformation of the trend

to be a linear combination of spatial coordinates and covariates and then the

random component to be a stationary Gaussian (normally distributed) Markov

Random Field (MRF).

â Informally, MRFs are spatial processes where the conditional distribution at any

point given the values at all other points is Gaussian with known mean and

variance dependent only upon those neighbouring values and the spatial

separation from each of them.
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Simulated random field on a regular grid
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Precipitation in Parana State, Brazil
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Exploratory analysis of simulated random field example
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Localised regression applied to simulated random field example
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loess plot order=2 and span= 0.2

Conclusion might be — no suggestion of simple deterministic spatial structure in

µ(s), possibly a constant mean process?



Exploratory analysis of dry season precipitation in Parana State
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Localised regression of dry season precipitation in Parana State
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loess plot order=2 and span= 0.2

Conclusion might be — SW trend in µ(s)?



Variogram, Covariogram, Correlogram
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Variogram Estimation

â For stationary process variogram should rise to an upper bound, the sill

corresponding to underlying variance of the process, σ2.

â Distance at which this occurs referred to as the range

â Note theoretically γ(0) = 0, but sample values with small separations may be

quite dissimilar—nugget effect.
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Sample variograms for simulated random field example
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Sample variograms for Parana State precipitation
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Modelling first order behaviour

â If justified from exploratory analysis, would normally propose a simple trend surface to

relate µ(s) to a function of si (and additional covariates). In the simplest case (where

exploratory analysis indicates a stationary mean) the first order model would just

comprise a constant mean

â The residuals from this trend can then be considered for modelling second order

behaviour.
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Sample variograms for residuals of Parana State precipitation

If we remove a quadratic trend in the eastings and the northings, then the residuals

have a sample variogram:
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Fitted Variogram for simulated random field example (constant mean)
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Variogram model of residuals of Parana precipitation (quadratic trend)
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The basic geostatistical model

â To form the overall basic geostatistical model, incorporating both first and second order

effects, we use a a hierarchical structure:

yi ∼ p(µi, σ
2)

g (µi) = β0 +
K∑

k=1

βkxik + θi

where p(·) is a suitably chosen probability distribution, g(·) is a suitably chosen ‘link

function’, βk (k = 0, . . . ,K) are fixed (mean) effects and θi are spatially correlated zero

mean random effects which are spatially structured i.e. they have a stationary gaussian

MRF.

â A hierarchical Bayesian approach, implemented through Markov Chain Monte Carlo

(MCMC) methods, is used to fit this model. Although in the simple case where p(·) is

gaussian and g(·) is the identity function that is not neceassry (‘classical kriging’).



Geostatistical prediction of simulated random field
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Geostatistical prediction of Parana state precipitation
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